OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 613–621

High-accuracy representation of propagation properties of hybrid modes in a Bragg fiber based on Bloch theorem in cylindrical coordinates

Akira Kitagawa and Jun-ichi Sakai  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 613-621 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000613


View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the propagation properties of a Bragg fiber with high-accuracy analytical representation. In this study, electromagnetic waves in the cladding are treated as genuine cylindrical waves, that is, Hankel functions. We apply the Bloch theorem in the cylindrical coordinates to the electromagnetic fields in the periodically stratified cladding structure. Then, effective indices are actually calculated for TE, TM, and hybrid (HE, EH) modes through eigenvalue equations. We show that these results are distinctly close to those by the multilayer division method that gives more accurate solutions for cylindrically symmetric fiber structures than the results by the asymptotic expansion method, even for the lowest mode HE 11 .

© 2011 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 7, 2010
Revised Manuscript: December 20, 2010
Manuscript Accepted: December 22, 2010
Published: March 3, 2011

Citation
Akira Kitagawa and Jun-ichi Sakai, "High-accuracy representation of propagation properties of hybrid modes in a Bragg fiber based on Bloch theorem in cylindrical coordinates," J. Opt. Soc. Am. B 28, 613-621 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-613


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995). [CrossRef]
  4. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  5. V. N. Melekhin and A. B. Manenkov, “Dielectric tube as low-loss waveguide,” Zh. Tekh. Fiz. 38, 2113–2115 (1968).
  6. Y. Xu, R. K. Lee, and A. Yariv, “Asymptotic analysis of Bragg fibers,” Opt. Lett. 25, 1756–1758 (2000). [CrossRef]
  7. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779(2001). [CrossRef] [PubMed]
  8. A. Argyros, “Guided modes and loss in Bragg fibres,” Opt. Express 10, 1411–1417 (2002). [PubMed]
  9. Y. Xu, G. X. Ouyang, R. K. Lee, and A. Yariv, “Asymptotic matrix theory of Bragg fibers,” J. Lightwave Technol. 20, 428–440(2002). [CrossRef]
  10. W. Zhi, R. Guobin, L. Shuqin, L. Weijun, and S. Guo, “Compact supercell method based on opposite parity for Bragg fibers,” Opt. Express 11, 3542–3549 (2003). [CrossRef] [PubMed]
  11. D. V. Prokopovich, A. V. Popov, and A. V. Vinogradov, “Analytical and numerical aspects of Bragg fiber design,” Prog. Electromag. Res. B 6, 361–379 (2008). [CrossRef]
  12. M. Ibanescu, S. G. Johnson, M. Soljačić, J. D. Joannopoulos, and Y. Fink, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003). [CrossRef]
  13. J. Sakai and P. Nouchi, “Propagation properties of Bragg fiber analyzed by a Hankel function formalism,” Opt. Commun. 249, 153–163 (2005). [CrossRef]
  14. J. Sakai, “Hybrid modes in a Bragg fiber: General properties and formulas under the quarter-wave stack condition,” J. Opt. Soc. Am. B 22, 2319–2330 (2005). [CrossRef]
  15. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002). [CrossRef] [PubMed]
  16. G. Vienne, Y. Xu, C. Jakobsen, H.-J. Deyerl, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express 12, 3500–3508 (2004). [CrossRef] [PubMed]
  17. J. Sakai and H. Niiro, “Confinement loss evaluation based on a multilayer division method in Bragg fibers,” Opt. Express 16, 1885–1902 (2008). [CrossRef] [PubMed]
  18. F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z. Phys. 52, 555–600 (1929). [CrossRef]
  19. A. Kitagawa and J. Sakai, “Bloch theorem in cylindrical coordinates and its application to a Bragg fiber,” Phys. Rev. A 80, 033802 (2009). [CrossRef]
  20. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965), Chap. 9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited