OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 622–628

Two-dimensional atom localization via interacting double-dark resonances

Ren-Gang Wan, Jun Kou, Li Jiang, Yun Jiang, and Jin-Yue Gao  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 622-628 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000622


View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scheme of two-dimensional (2D) atom localization based on the interference of double-dark resonances is proposed, in which the N-type atom interacts with two orthogonal standing-wave fields. Because of the spatial-dependent atom–field interaction, 2D atom localization can be realized via measuring the upper state population or the probe absorption. We obtain that the maximum probability of finding an atom at a particular position in a wavelength domain ( λ 1 × λ 2 ) is 1 / 2 when the atom is localized at the intersection of the antinodes of quadrants I and III of the standing-wave plane. This scheme shows more advantages than other schemes of 2D atom localization.

© 2011 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: December 15, 2010
Revised Manuscript: January 9, 2011
Manuscript Accepted: January 23, 2011
Published: March 3, 2011

Citation
Ren-Gang Wan, Jun Kou, Li Jiang, Yun Jiang, and Jin-Yue Gao, "Two-dimensional atom localization via interacting double-dark resonances," J. Opt. Soc. Am. B 28, 622-628 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-622


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. D. Phillips, “Nobel lecture: laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998). [CrossRef]
  2. K. S. Johnson, J. H. Thywissen, W. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit,” Science 280, 1583–1586 (1998). [CrossRef] [PubMed]
  3. K. T. Kapale, S. Qamar, and M. S. Zubairy, “Spectroscopic measurement of an atomic wave function,” Phys. Rev. A 67, 023805(2003). [CrossRef]
  4. A. M. Herkommer, H. J. Carmichael, and W. P. Schleich, “Localization of an atom by homodyne measurement,” Quantum Semiclass. Opt. 8, 189–203 (1996). [CrossRef]
  5. F. L. Kienm, G. Rempe, W. P. Schleich, and M. S. Zubairy, “Atom localization via Ramsey interferometry: a coherent cavity field provides a better resolution,” Phys. Rev. A 56, 2972–2977 (1997). [CrossRef]
  6. R. Quadt, M. Collett, and D. F. Walls, “Measurement of atomic motion in a standing light field by homodyne detection,” Phys. Rev. Lett. 74, 351–354 (1995). [CrossRef] [PubMed]
  7. S. Kunze, K. Dieckmann, and G. Rempe, “Diffraction of atoms from a measurement induced grating,” Phys. Rev. Lett. 78, 2038–2041 (1997). [CrossRef]
  8. S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Precision localization of single atom using Autler—Townes microscopy,” Opt. Commun. 176, 409–416 (2000). [CrossRef]
  9. S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Atom localization via resonance fluorescence,” Phys. Rev. A 61, 063806 (2000). [CrossRef]
  10. J. Xu and X. M. Hu, “Sub-half-wavelength atom localization via bichromatic phase control of spontaneous emission,” Phys. Lett. A 366, 276–281 (2007). [CrossRef]
  11. M. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, “Subwavelength atom localization via amplitude and phase control of the absorption spectrum,” Phys. Rev. A 72, 013820 (2005). [CrossRef]
  12. E. Paspalakis and P. L. Knight, “Localizing an atom via quantum interference,” Phys. Rev. A 63, 065802 (2001). [CrossRef]
  13. G. S. Agarwal and K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B 39, 3437–3446(2006). [CrossRef]
  14. C. P. Liu, S. Q. Gong, D. C. Cheng, X. J. Fan, and Z. Z. Xu, “Atom localization via interference of dark resonances,” Phys. Rev. A 73, 025801 (2006). [CrossRef]
  15. D. C. Cheng, Y. P. Niu, R. X. Li, and S. Q. Gong, “Controllable atom localization via double-dark resonances in a tripod system,” J. Opt. Soc. Am. B 23, 2180–2184 (2006). [CrossRef]
  16. J. Xu and X. M. Hu, “Sub-half-wavelength atom localization via phase control of a pair of bichromatic fields,” Phys. Rev. A 76, 013830 (2007). [CrossRef]
  17. S. Qamar, A. Mehmood, and S. Qamar, “Subwavelength atom localization via coherent manipulation of the Raman gain process,” Phys. Rev. A 79, 033848 (2009). [CrossRef]
  18. L. L. Jin, H. Sun, Y. P. Niu, and S. Q. Gong, “Sub-half-wavelength atom localization via two standing-wave fields,” J. Phys. B 41, 085508 (2008). [CrossRef]
  19. J. Evers, S. Qamar, and M. S. Zubairy, “Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements,” Phys. Rev. A 75, 053809(2007). [CrossRef]
  20. V. Ivanov and Y. Rozhdestvensky, “Two-dimensional atom localization in a four-level tripod system in laser fields,” Phys. Rev. A 81, 033809 (2010). [CrossRef]
  21. L. L. Jin, H. Sun, Y. P. Niu, S. Q. Jin, and S. Q. Gong, “Two-dimension atom nano-lithograph via atom localization,” J. Mod. Opt. 56, 805–810 (2009). [CrossRef]
  22. R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system,” J. Opt. Soc. Am. B 28, 10–17(2011). [CrossRef]
  23. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999). [CrossRef]
  24. Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001). [CrossRef]
  25. S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003). [CrossRef]
  26. Y. P. Niu, S. Q. Gong, R. X. Li, Z. Z. Xu, and X. Y. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited