Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-dimensional atom localization via interacting double-dark resonances

Not Accessible

Your library or personal account may give you access

Abstract

A scheme of two-dimensional (2D) atom localization based on the interference of double-dark resonances is proposed, in which the N-type atom interacts with two orthogonal standing-wave fields. Because of the spatial-dependent atom–field interaction, 2D atom localization can be realized via measuring the upper state population or the probe absorption. We obtain that the maximum probability of finding an atom at a particular position in a wavelength domain (λ1×λ2) is 1/2 when the atom is localized at the intersection of the antinodes of quadrants I and III of the standing-wave plane. This scheme shows more advantages than other schemes of 2D atom localization.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system

Ren-Gang Wan, Jun Kou, Li Jiang, Yun Jiang, and Jin-Yue Gao
J. Opt. Soc. Am. B 28(1) 10-17 (2011)

Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission

Ren-Gang Wan and Tong-Yi Zhang
Opt. Express 19(25) 25823-25832 (2011)

Controllable atom localization via double-dark resonances in a tripod system

Dong-chao Cheng, Yue-ping Niu, Ru-xin Li, and Shang-qing Gong
J. Opt. Soc. Am. B 23(10) 2180-2184 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved