OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 832–841

Intrinsic limitations to the quality of pulsed spontaneous parametric downconversion sources for quantum information applications

Jean-Loup Smirr, Robert Frey, Eleni Diamanti, Romain Alléaume, and Isabelle Zaquine  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 832-841 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spontaneous parametric downconversion (SPDC) sources are an essential element of quantum communication and quantum information processing systems. Their quality can be hampered by spectral, temporal, or spatial distinguishability of the two photons of a generated pair. Even when such defects have been corrected, the ultimate quality of the SPDC source is limited by the intrinsic multiple pair generation. In this paper, the effect of trans mission, filtering and detection losses and asymmetrical spectral bandwidths in the photon pair paths on the visibility of the two-photon interference delivered by the SPDC source and its useful pair rate are investigated. In this investigation, two subcases are distinguished: deterministic and statistical splittings of the generated pairs, whatever the coherence of the multiple pairs. We show that the visibility is strongly degraded by a spectral bandwidth asymmetry, while the losses mainly affect the measured coincidence probability. The deterministic splitting configuration is shown to be generally more advantageous, although statistical splitting may present some ad vantages in applications with a narrow bandwidth requirement, such as those involving quantum memories. Moreover, while pump-induced optical noise only produces small visibility reductions, dark counts of the single-photon detectors are shown to limit the maximum possible visibility, particularly in the case of high-loss photon pair sources. Because our model quantifies the intrinsic limitations due to double pair emission in a simple way, the results presented can be used to optimize the design of SPDC sources and choose the optimum trade- offs between several key parameters such as visibility, generation probabilities, and spectral bandwidth, in particular for small bandwidth SPDC sources in the perspective of quantum networking and computing applications.

© 2011 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5290) Quantum optics : Photon statistics
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: June 28, 2010
Revised Manuscript: February 8, 2011
Manuscript Accepted: February 9, 2011
Published: March 22, 2011

Jean-Loup Smirr, Robert Frey, Eleni Diamanti, Romain Alléaume, and Isabelle Zaquine, "Intrinsic limitations to the quality of pulsed spontaneous parametric downconversion sources for quantum information applications," J. Opt. Soc. Am. B 28, 832-841 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  2. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009). [CrossRef]
  3. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The Secoqc quantum key distribution network in Vienna,” New J. Phys. 11, 075001–075038 (2009). [CrossRef]
  4. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum Repeaters with photon-pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503–190507 (2007). [CrossRef] [PubMed]
  5. W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication,” Quantum Inf. Comput. 1, 3–56 (2001).
  6. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, “Long distance quantum teleportation in a quantum relay configuration,” Phys. Rev. Lett. 92, 047904–047908 (2004). [CrossRef] [PubMed]
  7. F. de Seze, F. Dahes, V. Crozatier, I. Lorgeré, F. Bretenaker, and J.-L. Le Gouët, “Coherent driving of Tm3+:YAG ions using a complex hyperbolic secant optical field,” Eur. Phys. J. D 33, 343–355 (2005). [CrossRef]
  8. F. de Seze, A. Louchet, V. Crozatier, I. Lorgeré, F. Bretenaker, J.-L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, “Experimental tailoring of a three-level system in Tm3+:YAG,” Phys. Rev. B 73, 085112–085123 (2006). [CrossRef]
  9. A. Louchet, Y. Le Du, F. Bretenaker, T. Chanelière, F. Goldfarb, I. Lorgeré, J.-L. Le Gouët, O. Guillot-Noël, and P. Goldner, “Optical Excitation of Nuclear Spin Coherence in Tm3+:YAG,” Phys. Rev. B 77, 195110–195115 (2008). [CrossRef]
  10. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using EIT in a solid,” Phys. Rev. Lett. 95, 063601–063605(2005). [CrossRef] [PubMed]
  11. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004). [CrossRef] [PubMed]
  12. S. Tanzilli, M. Halder, W. Tittel, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef] [PubMed]
  13. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306–052311 (2000). [CrossRef]
  14. Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, “Two-photon entanglement in type-II parametric down-conversion,” Phys. Rev. A 50, 23–28 (1994). [CrossRef] [PubMed]
  15. M. Fiorentino, C. Kuklewicz, and F. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13, 127–135(2005). [CrossRef] [PubMed]
  16. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, 163–174(2004). [CrossRef]
  17. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573–3580 (2004). [CrossRef] [PubMed]
  18. J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13, 8951–8959 (2005). [CrossRef] [PubMed]
  19. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341(1995). [CrossRef] [PubMed]
  20. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582(2005). [CrossRef] [PubMed]
  21. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601–223605 (2006). [CrossRef] [PubMed]
  22. H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804–043808(2004). [CrossRef]
  23. A. E. B. Nielsen and K. Molmer, “Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator,” Phys. Rev. A 75, 023806–023814 (2007). [CrossRef]
  24. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007). [CrossRef] [PubMed]
  25. A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55–58 (2009). [CrossRef]
  26. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of Narrow-Band Polarization-Entangled Photon Pairs for Atomic Quantum Memories,” Phys. Rev. Lett. 101, 190501–190504 (2008). [CrossRef] [PubMed]
  27. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314–032323 (2008). [CrossRef]
  28. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-visibility transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007). [CrossRef] [PubMed]
  29. M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett. 94, 201105–201108 (2009). [CrossRef]
  30. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007). [CrossRef] [PubMed]
  31. A. Ling, J. Chen, J. Fan, and A. Migdall, “Mode expansion and Bragg filtering for a high-fidelity fiber-based photon-pair source,” Opt. Express 17, 21302–21312 (2009). [CrossRef] [PubMed]
  32. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66, 062308–062314 (2002). [CrossRef]
  33. J. B. Alpeter, E. R. Jeffrey, P. C. Kwiat, S. Tanzilli, and N. Gisin, “Experimental methods for detecting entanglement,” Phys. Rev. Lett. 95, 033601–033604 (2005). [CrossRef]
  34. H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden, and N. Gisin, “Two independent photon pairs versus four-photon entangled states in parametric down conversion,” J. Mod. Opt. 51, 1637–1649 (2004).
  35. V. Scarani, H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Four-photon correction in two-photon Bell experiments,” Eur. Phys. J. D 32, 129–138 (2005). [CrossRef]
  36. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photon. 4, 218–221 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited