OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1238–1244

Filtering equation for measurement of a coherent channel

Anita Dąbrowska and Przemysław Staszewski  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 1238-1244 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001238


View Full Text Article

Enhanced HTML    Acrobat PDF (215 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a stochastic model for continuous photon counting and heterodyne measurement of a coherent source. A nonlinear filtering equation for the posterior state of a single-mode field in a cavity is derived by using the methods of the quantum stochastic calculus. The posterior dynamics is found for the observation of a Bose field being initially in a coherent state. The filtering equations for the counting and diffusion processes are given.

© 2011 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 28, 2010
Manuscript Accepted: February 23, 2011
Published: April 25, 2011

Citation
Anita Dąbrowska and Przemysław Staszewski, "Filtering equation for measurement of a coherent channel," J. Opt. Soc. Am. B 28, 1238-1244 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-1238


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. P. Belavkin, “A continuous counting observation and posterior quantum dynamics,” J. Phys. A 22, L1109–L1114 (1989). [CrossRef]
  2. V. P. Belavkin, “A posterior Schrödinger equation for continuous nondemolition measurement,” J. Math. Phys. 31, 2930–2934(1990). [CrossRef]
  3. A. Barchielli and V. P. Belavkin, “Measurements continuous in time and a posteriori states in quantum mechanics,” J. Phys. A: Math. Gen. 24, 1495–1514 (1991). [CrossRef]
  4. V. P. Belavkin, “Quantum stochastic calculus and quantum nonlinear filtering,” J. Multivar. Anal. 42, 171–201 (1992). [CrossRef]
  5. V. P. Belavkin and P. Staszewski, “Nondemolition observation of a free quantum particle,” Phys. Rev. A 45, 1347–1356 (1992). [CrossRef] [PubMed]
  6. V. P. Belavkin, “Measurement, filtering and control in quantum open dynamical systems,” Rep. Math. Phys. 43, A405–A425(1999). [CrossRef]
  7. L. Bouten, M. I. Guţă, and H. Maassen, “Stochastic Schrödinger equations,” J. Phys. A 37, 3189–3209 (2004). [CrossRef]
  8. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2010).
  9. R. L. Hudson and K. R. Parthasarathy, “Quantum Ito’s formula and stochastic evolutions,” Commun. Math. Phys. 93, 301–323(1984). [CrossRef]
  10. C. W. Gardiner and M. J. Collet, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985). [CrossRef] [PubMed]
  11. K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhäuser Verlag, 1992). [CrossRef]
  12. C. W. Gardiner, Quantum Noise (Springer, 2000).
  13. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics II (Springer, 1981).
  14. H. M. Wiseman and G. J. Milburn, “Quantum theory of field-quadrature measurements,” Phys. Rev. A 47, 642–662 (1993). [CrossRef] [PubMed]
  15. H. M. Wiseman and G. J. Milburn, “Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere,” Phys. Rev. A 47, 1652–1666 (1993). [CrossRef] [PubMed]
  16. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993).
  17. A. Barchielli, “Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics,” Quantum Opt. 2, 423–441 (1990). [CrossRef]
  18. A. Barchielli, “Continual measurements in quantum mechanics and quantum stochastic calculus,” in Open Quantum Systems III. Recent Developments, A.Atall, A.Joye, and C.A.Pillet, eds. (Springer LNM, 2006), pp. 207–288. [CrossRef]
  19. A. Barchielli and N. Pero, “A quantum stochastic approach to the spectrum of a two-level atom,” J. Opt. B: Quantum Semiclass. Opt. 4, 272–282 (2002). [CrossRef]
  20. A. Barchielli, “Measurement theory and stochastic differential equations in quantum mechanics,” Phys. Rev. A 34, 1642–1649(1986). [CrossRef] [PubMed]
  21. M. J. Collet, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Optics 34, 881–902 (1987). [CrossRef]
  22. V. P. Belavkin and S. Edwards, “Quantum filtering and optimal control,” in Quantum Filtering and Optimal Control, V.P.Belavkin and M.Guţă, eds. (World Scientific, 2008), pp. 143–205.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited