OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1266–1274

Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties

Yang Zhao, Nader Engheta, and Andrea Alù  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1266-1274 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we analyze the relations between radiation properties and sensitivity of optical nanoantennas and their shape and design parameters using nanocircuit concepts. We apply these findings to optimize the sensitivity and bandwidth of printed plasmonic nanoantennas for their potential use in optical communications and label-free biosensing applications. In comparison to conventional plasmonic optical sensors, which mainly rely on localized surface plasmons, our design rules suggest that optical nanoantennas may provide enhanced sensitivity for biomedical applications, and our analytical solutions based on their equivalent nanocircuit model may provide an efficient tool for their design optimization. Several numerical simulations are presented to verify utility of this design method, providing excellent agreement between numerical and analytical results.

© 2011 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Physical Optics

Original Manuscript: February 28, 2011
Manuscript Accepted: March 7, 2011
Published: April 27, 2011

Yang Zhao, Nader Engheta, and Andrea Alù, "Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties," J. Opt. Soc. Am. B 28, 1266-1274 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  2. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005). [CrossRef] [PubMed]
  3. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  4. Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials 2, 45–51 (2008). [CrossRef]
  5. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2007). [CrossRef] [PubMed]
  6. R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, and V. M. Shalaev “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92, 043101 (2008). [CrossRef]
  7. A. Bek, R. Jansen, M. Ringler, S. Mayilo, T. A. Klar, and J. Feldmann, “Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches,” Nano Lett. 8, 485–490 (2008). [CrossRef] [PubMed]
  8. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004). [CrossRef] [PubMed]
  9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  10. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007). [CrossRef] [PubMed]
  11. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005). [CrossRef] [PubMed]
  12. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009). [CrossRef]
  13. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006). [CrossRef] [PubMed]
  14. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). [CrossRef] [PubMed]
  15. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004). [CrossRef] [PubMed]
  16. S. A. Choulis, M. K. Mathai, and V. E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88, 213503(2006). [CrossRef]
  17. J. J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005). [CrossRef] [PubMed]
  18. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009). [CrossRef] [PubMed]
  19. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photon. 2, 307–310 (2008). [CrossRef]
  20. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008). [CrossRef] [PubMed]
  21. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008). [CrossRef]
  22. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010). [CrossRef] [PubMed]
  23. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  24. M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photon. 2, 201–203 (2008). [CrossRef]
  25. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008). [CrossRef] [PubMed]
  26. C. K. M. Fung, N. Xi, B. Shanker, K. W. C. Lai, and H. Chen, “Dipole and bowtie antenna for carbon nanotube (CNT) based infrared sensors,” in Proceedings of IEEE Conference on Nanotechnology Materials and Devices (IEEE, 2009), pp. 87–90.
  27. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702(2007). [CrossRef] [PubMed]
  28. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  29. A. Alù and N. Engheta, “On certain design criteria for nanoantennas in the visible,” J. Comput. Theor. Nanosci. 6, 2009–2015(2009). [CrossRef]
  30. CST Microwave Studio 2010, CST of America, Inc..
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  32. A. Alù, A. Salandrino, and N. Engheta, “Parallel, series, and intermediate interconnections of optical nanocircuit elements. 2. Nanocircuit and physical interpretation,” J. Opt. Soc. Am. B 24, 3014–3022 (2007). [CrossRef]
  33. A. Alù and N. Engheta, “Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy,” New J. Phys. 11, 013026 (2009). [CrossRef]
  34. J. W. Becker, G. N. Reeke, J. L. Wang, B. A. Cunningham, and G. M. Edelman, “The covalent and three dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides,” J. Biol. Chem. 250, 1513–1524, (1975). [PubMed]
  35. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14, 5636–5648 (1998). [CrossRef]
  36. H. Sun, A. Chen, and L. R. Dalton, “Enhanced evanescent confinement in multiple-slot waveguides and its application in biochemical sensing,” IEEE Photon. J. 1, 48–57 (2009). [CrossRef]
  37. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef] [PubMed]
  38. A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers,” J. Appl. Phys. 97, 094310 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited