OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1308–1316

Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

Casper Larsen, David G. Cooke, and Peter Uhd Jepsen  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 1308-1316 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001308


View Full Text Article

Enhanced HTML    Acrobat PDF (1589 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the THz probe pulse and can be determined solely by the pump pulse duration. Our method is found to reproduce complicated two-dimensional transient conductivity maps exceedingly well, demonstrating the power of the time-domain numerical method for extracting ultrafast and dynamic transport parameters from time-resolved THz spectroscopy experiments. The numerical implementation is available online.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: February 7, 2011
Manuscript Accepted: March 8, 2011
Published: April 28, 2011

Citation
Casper Larsen, David G. Cooke, and Peter Uhd Jepsen, "Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments," J. Opt. Soc. Am. B 28, 1308-1316 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-1308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer-Verlag, 1999).
  2. A. Othonos, “Probing ultrafast carrier and phonon dynamics in semiconductors,” J. Appl. Phys. 83, 1789–1830 (1998). [CrossRef]
  3. G. Gallot, J. Zhang, R. McGowan, T. Jeon, and D. Grischkowsky, “Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation,” Appl. Phys. Lett. 74, 3450–3452 (1999). [CrossRef]
  4. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001). [CrossRef] [PubMed]
  5. R. A. Kaindl, M. A. Carnahan, D. Hagele, R. Lovenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas,” Nature 423, 734–738 (2003). [CrossRef] [PubMed]
  6. C. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104, 1759–1780 (2004). [CrossRef] [PubMed]
  7. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging—modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011). [CrossRef]
  8. H. Němec, F. Kadlec, and P. Kužel, “Methodology of an optical pump-terahertz probe experiment: an analytical frequency-domain approach,” J. Chem. Phys. 117, 8454–8466 (2002). [CrossRef]
  9. M. Beard, G. Turner, and C. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764–15777(2000). [CrossRef]
  10. J. Kindt and C. Schmuttenmaer, “Theory for determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy,” J. Chem. Phys. 110, 8589–8596 (1999). [CrossRef]
  11. M. Beard and C. Schmuttenmaer, “Using the finite-difference time-domain pulse propagation method to simulate time-resolved THz experiments,” J. Chem. Phys. 114, 2903–2909(2001). [CrossRef]
  12. M. Beard, G. Turner, and C. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90, 5915–5923 (2001). [CrossRef]
  13. H. Němec, F. Kadlec, S. Surendran, P. Kužel, and P. Jungwirth, “Ultrafast far-infrared dynamics probed by terahertz pulses: a frequency domain approach. I. model systems,” J. Chem. Phys. 122, 104503 (2005). [CrossRef] [PubMed]
  14. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16, 1204–1212(1999). [CrossRef]
  15. D. Côté, J. Sipe, and H. van Driel, “Simple method for calculating the propagation of terahertz radiation in experimental geometries,” J. Opt. Soc. Am. B 20, 1374–1385 (2003). [CrossRef]
  16. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2005).
  17. W. Pernice, F. Payne, and D. Gallagher, “A finite-difference time-domain method for the simulation of gain materials with carrier diffusion in photonic crystals,” J. Lightwave Technol. 25, 2306–2314 (2007). [CrossRef]
  18. M. Dressel and M. Scheffler, “Verifying the Drude response,” Ann. Phys. 15, 535–544 (2006). [CrossRef]
  19. C. Stanton and D. Bailey, “Rate equations for the study of femtosecond intervalley scattering in compound semiconductors,” Phys. Rev. B 45, 8369–8377 (1992). [CrossRef]
  20. K. Iwaszczuk, D. G. Cooke, M. Fujiwara, H. Hashimoto, and P. Jepsen, “Simultaneous reference and differential waveform acquisition in time-resolved terahertz spectroscopy,” Opt. Express 17, 21969–21976 (2009). [CrossRef] [PubMed]
  21. C. Larsen, D. G. Cooke, and P. U. Jepsen, “A numerical implementation in MATLAB,” available online at http://www.physics.mcgill.ca/~cooke/ and http://www.terahertz.dk (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited