OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1616–1621

Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides

Hua Lu, Xueming Liu, Yongkang Gong, Dong Mao, and Guoxi Wang  »View Author Affiliations

JOSA B, Vol. 28, Issue 7, pp. 1616-1621 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (779 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanoplasmonic wavelength demultiplexing (WDM) structures based on metal-insulator-metal waveguides are designed and investigated numerically. The WDM structures possess a series of resonator-based channel drop filters near a bus waveguide. The demultiplexing wavelength of each channel can be tuned by adjusting the geometrical parameters and refractive index of the resonator. The numerical results based on the finite-difference time-domain method can be accurately explained by the resonant theory. Meanwhile, the transmission characteristics of the drop waveguide are influenced by the coupling distance between the resonator and drop/bus waveguides, which can be exactly analyzed by the temporal coupled-mode theory. Additionally, it is found that the drop efficiencies can be improved by a factor of more than 1.8 when a reflection feedback is introduced in the bus waveguide.

© 2011 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 23, 2011
Manuscript Accepted: April 27, 2011
Published: June 6, 2011

Hua Lu, Xueming Liu, Yongkang Gong, Dong Mao, and Guoxi Wang, "Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides," J. Opt. Soc. Am. B 28, 1616-1621 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef] [PubMed]
  4. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004). [CrossRef] [PubMed]
  5. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006). [CrossRef] [PubMed]
  6. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011). [CrossRef] [PubMed]
  7. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004). [CrossRef]
  9. K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218–3223 (2005). [CrossRef]
  10. H. Kim, J. Park, and B. Lee, “Tunable directional beaming from subwavelength metal slits with metal—dielectric composite surface gratings,” Opt. Lett. 34, 2569–2571 (2009). [CrossRef] [PubMed]
  11. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402(2005). [CrossRef] [PubMed]
  12. D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010). [CrossRef]
  13. G. Tremblay and Y. L. Sheng, “Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique,” Appl. Opt. 49, A36–A41 (2010). [CrossRef] [PubMed]
  14. S. Y. Yang, W. B. Chen, R. L. Nelson, and Q. W. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34, 3047–3049 (2009). [CrossRef] [PubMed]
  15. I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon. 4, 382–387 (2010). [CrossRef]
  16. Q. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102, 056801 (2009). [CrossRef] [PubMed]
  17. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef] [PubMed]
  18. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107(2005). [CrossRef]
  19. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323(2006). [CrossRef]
  20. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736(2009). [CrossRef] [PubMed]
  21. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18, 14496–14510 (2010). [CrossRef] [PubMed]
  22. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286 (2009). [CrossRef]
  23. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B 73, 035407(2006). [CrossRef]
  24. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef] [PubMed]
  25. J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27, 323–327 (2010). [CrossRef]
  26. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007). [CrossRef]
  27. T. Wang, X. Wen, C. Yin, and H. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17, 24096–24101 (2009). [CrossRef]
  28. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937(2006). [CrossRef] [PubMed]
  29. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010). [CrossRef] [PubMed]
  30. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17, 7549–7554 (2009). [CrossRef]
  31. A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Nanoscale plasmon waveguide including cavity resonator,” J. Phys. Condens. Matter 21, 375301 (2009). [CrossRef] [PubMed]
  32. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011). [CrossRef]
  33. I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26, 2623–2633 (2009). [CrossRef]
  34. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007). [CrossRef] [PubMed]
  35. A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys. 11, 103020 (2009). [CrossRef]
  36. M. S. Kumar, X. Piao, S. Koo, S. Yu, and N. Park, “Out of plane mode conversion and manipulation of surface plasmon polariton waves,” Opt. Express 18, 8800–8805 (2010). [CrossRef] [PubMed]
  37. X. Mei, X. Huang, J. Tao, J. Zhu, Y. Zhu, and X. Jin, “A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities,” J. Opt. Soc. Am. B 27, 2707–2713 (2010). [CrossRef]
  38. F. Hu, H. Yi, and Z. Zhou, “A wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36, 1500–1502 (2011). [CrossRef] [PubMed]
  39. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011). [CrossRef] [PubMed]
  40. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18, 11111–11116 (2010). [CrossRef] [PubMed]
  41. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).
  42. Z. Zhong, Y. Xu, S. Lan, Q. Dai, and L. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 79–86 (2010). [CrossRef] [PubMed]
  43. S. Kim, I. Park, and H. Lim, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Opt. Express 12, 5518–5525 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited