OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2659–2664

Linear transformation optics for plasmonics

Weiren Zhu, Ivan D. Rukhlenko, and Malin Premaratne  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2659-2664 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002659


View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The method of transformation optics (TO) has recently been applied to the problem of manipulating the flow of surface plasmon polaritons (SPPs) along metal–dielectric interfaces. Although it allows one to theoretically control the flow in any manner desired, it usually leads to material properties not found in nature, thus making the realization of theoretical potentialities impractical. Therefore, artificial materials (called metamaterials), with both inhomogeneous and anisotropic electromagnetic response, are normally required to create the optical space designed with the TO method. In this paper, by utilizing linear coordinate transformations, we demonstrate that it is possible to maneuver the flow of SPPs in various ways within the realm of homogeneous metamaterials. Specifically, we describe how to construct a plasmon guider for a particular nonflat surface, an invisibility cloak that renders objects undetectable via SPPs, and a concentrator of the SPPs’ energy. The functionalities of these devices are visualized, and their performance is investigated, using finite-element simulations. The results presented show that the method of linear transformations is a simple, viable, and effective approach to the design of feasible plasmonic devices based on homogenous materials.

© 2012 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.0230) Optical devices : Optical devices
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: June 4, 2012
Revised Manuscript: August 7, 2012
Manuscript Accepted: August 8, 2012
Published: September 6, 2012

Citation
Weiren Zhu, Ivan D. Rukhlenko, and Malin Premaratne, "Linear transformation optics for plasmonics," J. Opt. Soc. Am. B 29, 2659-2664 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2659


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  3. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications (Springer, 2010).
  4. P. Alitalo and S. Tretyakov, “Electromagnetic cloaking with metamaterials,” Mater. Today 12, 22–29 (2009). [CrossRef]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  6. M. Rahm, D. Schurig, D. R. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008). [CrossRef]
  7. Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008). [CrossRef]
  8. T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008). [CrossRef]
  9. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef]
  10. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishevand, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009). [CrossRef]
  11. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007). [CrossRef]
  12. W. Zhu, C. Ding, and X. Zhao, “A numerical method for designing acoustic cloak with homogeneous metamaterials,” Appl. Phys. Lett. 97, 131902 (2010). [CrossRef]
  13. M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Phys. Rev. Lett. 103, 024301 (2009). [CrossRef]
  14. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010). [CrossRef]
  15. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010). [CrossRef]
  16. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappingss,” New J. Phys. 13, 033011 (2011). [CrossRef]
  17. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6, 151–155 (2011). [CrossRef]
  18. M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: Cloak, concentrator and rotator for SPPs,” Opt. Express 18, 12027–12032 (2010). [CrossRef]
  19. M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011). [CrossRef]
  20. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach,” ACS Nano 5, 3293–3308 (2011). [CrossRef]
  21. Y. Luo, A. Aubry, and J. B. Pendry, “Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach,” Phys. Rev. B 83, 155422 (2011). [CrossRef]
  22. Y. Luo, J. B. Pendry, and A. Aubry, “Surface plasmons and singularities,” Nano Lett. 10, 4186–4191 (2010). [CrossRef]
  23. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33, 1342–1344 (2008). [CrossRef]
  24. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  25. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Maneuvering propagation of surface plasmon polaritons using complementary medium inserts,” IEEE Photon. J. 4, 741–747 (2012). [CrossRef]
  26. W. Li, J. Guan, Z. Sun, W. Wang, and Q. Zhang, “A near-perfect invisibility cloak constructed with homogeneous materials,” Opt. Express 17, 23410–23416 (2009). [CrossRef]
  27. W. Li, J. Guan, and W. Wang, “Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio,” J. Phys. D 44, 125401 (2011). [CrossRef]
  28. W. Zhu, I. Shadrivov, D. Powell, and Y. Kivshar, “Hiding in the corner,” Opt. Express 19, 20827–20832 (2011). [CrossRef]
  29. H. Chen and B. Zheng, “Broadband polygonal invisibility cloak for visible light,” Sci. Reports 2, 255 (2012).
  30. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011). [CrossRef]
  31. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106, 033901 (2011). [CrossRef]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited