OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2839–2847

Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum

Muhammad I. Aslam and Durdu Ö. Güney  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2839-2847 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (712 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present what is to our knowledge the first dual-band negative index metamaterial that operates in the visible spectrum. The optimized four-functional-layer metamaterial structure exhibits the first double-negative (i.e., simultaneously negative permittivity and permeability) band in the red region of the visible spectrum with a figure of merit of 1.7 and the second double-negative band in the green region of the visible spectrum with a figure of merit of 3.2. The optical behavior of the proposed structure is independent of the polarization of the incident field. This low-loss metamaterial structure can be treated as a modified version of a fishnet metamaterial structure with an additional metal layer of different thickness in a single functional layer. The additional metal layer extends the diluted plasma frequency deep into the visible spectrum above the second-order magnetic resonance of the structure and hence provides a dual-band operation with simultaneously negative effective permittivity and permeability. Broadband metamaterials with multiple negative index bands may be possible with the same technique by employing higher-order magnetic resonances. The structure can be fabricated with standard microfabrication techniques that have been used to fabricate fishnet metamaterial structures.

© 2012 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 24, 2012
Revised Manuscript: August 21, 2012
Manuscript Accepted: August 25, 2012
Published: September 21, 2012

Muhammad I. Aslam and Durdu Ö. Güney, "Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum," J. Opt. Soc. Am. B 29, 2839-2847 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. http://www.wave-scattering.com/negative.html .
  2. A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, 1904), pp. 313–318.
  3. H. C. Pocklington, “Growth of a wave-group when the group velocity is negative,” Nature 71, 607–608 (1905). [CrossRef]
  4. G. D. Malyuzhinets, “A note on the radiation principle,” Zh. Tekh. Fiz. 21, 940–942 (1951).
  5. D. V. Sivukhin, “The energy of electromagnetic waves in dispersive media,” Opt. Spetrosk. 3, 308–312 (1957).
  6. V. G. Veselago, “The electrodynamics of substances with simulataneously negative values of e and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  7. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998). [CrossRef]
  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  11. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  12. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007). [CrossRef]
  13. C. M. Soukoulis, and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011). [CrossRef]
  14. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  15. D. Ö. Güney, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34, 506–508 (2009). [CrossRef]
  16. T. Xu, Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16, 13579–13584 (2008). [CrossRef]
  17. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  18. T. Koschny, R. Moussa, and C. M. Soukoulis, “Limits on the amplification of evanescent waves of left-handed materials,” J. Opt. Soc. Am. B 23, 485–489 (2006). [CrossRef]
  19. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  20. I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, “Compact size highly directive antennas based on the SRR metamaterial medium,” New J. Phys. 7, 223 (2005). [CrossRef]
  21. D. Ö. Güney, and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79, 063834 (2009). [CrossRef]
  22. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009). [CrossRef]
  23. U. Leonhardt, and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys. 9, 254 (2007). [CrossRef]
  24. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005). [CrossRef]
  25. M. I. Aslam, and D. Ö. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84, 195465 (2011). [CrossRef]
  26. D. Ö. Güney, T. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83, 045107 (2011). [CrossRef]
  27. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009). [CrossRef]
  28. C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett. 34, 1603–1605 (2009). [CrossRef]
  29. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000). [CrossRef]
  30. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13, 1811–1818 (2001). [CrossRef]
  31. H.-F. Zhang, Q. Wang, N.-H. Shen, R. Li, J. Chen, J. Ding, and H.-T. Wang, “Surface plasmon polaritons at interfaces associated with artificial composite materials,” J. Opt. Soc. Am. B 22, 2686–2696 (2005). [CrossRef]
  32. S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005). [CrossRef]
  33. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef]
  34. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011). [CrossRef]
  35. P. Ding, E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, “Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure,” Photon. Nanostr. Fundam. Appl. 7, 92–100 (2009). [CrossRef]
  36. K. B. Alici and E. Ozbay, “A planar metamaterial: polarization independent fishnet structure,” Photon. Nanostr. Fundam. Appl. 6, 102–107 (2008). [CrossRef]
  37. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. 34, 3478–3480 (2009). [CrossRef]
  38. C. Sabah, and H. G. Roskos, “Dual-band polarization-independent sub-terahertz fishnet metamaterial,” Curr. Appl. Phys. 12, 443–450 (2012). [CrossRef]
  39. D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15, 1647–1652 (2007). [CrossRef]
  40. U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett. 32, 1671–1673 (2007). [CrossRef]
  41. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007). [CrossRef]
  42. J. Parsons and A. Polman, “A copper negative index metamaterial in the visible/near-infrared,” Appl. Phys. Lett. 99, 161108 (2011). [CrossRef]
  43. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551–553 (2007). [CrossRef]
  44. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [CrossRef]
  45. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  46. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]
  47. J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80, 035109 (2009). [CrossRef]
  48. T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005). [CrossRef]
  49. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003). [CrossRef]
  50. S. S. Kruk, D. A. Powell, A. Minovich, D. N. Neshev, and Y. S. Kivshar, “Spatial dispersion of multilayer fishnet metamaterials,” Opt. Express 20, 15100–15105 (2012). [CrossRef]
  51. C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 367–375 (2010). [CrossRef]
  52. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, I. McKerracher, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted optical response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010). [CrossRef]
  53. C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, and F. Lederer, “Validity of material parameters for optical fishnet structures,” Phys. Rev. B 81, 035320 (2010). [CrossRef]
  54. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretryakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003). [CrossRef]
  55. S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B 80, 245101 (2009). [CrossRef]
  56. M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B 77, 233104 (2008). [CrossRef]
  57. J. D. Baena, L. Jelinek, R. Marques, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A 78, 013842 (2008). [CrossRef]
  58. C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008). [CrossRef]
  59. C. R. Simovski, “Analytical modeling of double-negative composites,” Metamaterials 2, 169–185 (2008). [CrossRef]
  60. D. O. Guney, Th. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18, 12348–12353(2010). [CrossRef]
  61. A. Andryieuski, S. Ha, A. A. Sukhorukov, Y. S. Kivshar, and A. V. Lavrinenko, “Bloch-mode analysis for retrieving effective parameters of metamaterials,” Phys. Rev. B 86, 035127(2012). [CrossRef]
  62. C. R. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726–753 (2009). [CrossRef]
  63. J. T. Costa, M. G. Silveirinha, and S. I. Maslovski, “Finite-difference frequency-domain method for the extraction of effective parameters of metamaterials,” Phys. Rev. B 80, 235124 (2009). [CrossRef]
  64. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. U. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011). [CrossRef]
  65. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006). [CrossRef]
  66. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006). [CrossRef]
  67. H. N. S. Krishnamoorthy, Z. Jacob, E. Nerimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012). [CrossRef]
  68. E. Nerimanov and I. Smolyaninov, “Beyond Stefan–Boltzmann law: thermal hyper-conductivity” (2011), http://arxiv.org/abs/1109.5444 .
  69. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100, 123901 (2008). [CrossRef]
  70. R. Marqués, L. Jelinek, F. Mesa, and F. Medina, “Analytical theory of wave propagation through stacked fishnet metamaterials,” Opt. Express 17, 11582–11593 (2009). [CrossRef]
  71. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008). [CrossRef]
  72. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011). [CrossRef]
  73. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008). [CrossRef]
  74. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16, 1186–1195 (2008). [CrossRef]
  75. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  76. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1236 KB)     
» Media 2: MOV (1257 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited