OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2901–2909

Efficient two-process frequency conversion through a dark intermediate state

Gil Porat and Ady Arie  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2901-2909 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002901


View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two simultaneous three wave mixing processes are analyzed, where an input frequency is converted to an output frequency via an intermediate stage. By employing simultaneous phase-matching and an adiabatic modulation of the nonlinear coupling strengths, the intermediate frequency is kept dark throughout the interaction while obtaining high conversion efficiency. This feat is accomplished in a manner analogous to population transfer in atomic stimulated Raman adiabatic passage. Applications include conversion between remote frequencies, e.g., mid-IR to visible, and study of electronic crystal properties in the UV absorption band.

© 2012 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 9, 2012
Manuscript Accepted: August 21, 2012
Published: September 24, 2012

Citation
Gil Porat and Ady Arie, "Efficient two-process frequency conversion through a dark intermediate state," J. Opt. Soc. Am. B 29, 2901-2909 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2901


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” Prog. Opt. 47, 1–73 (2005). [CrossRef]
  3. A. Tehranchi, R. Morandotti, and R. Kashyap, “Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings,” Opt. Express 19, 22528–22534 (2011). [CrossRef]
  4. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  5. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007). [CrossRef]
  6. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005). [CrossRef]
  7. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999). [CrossRef]
  8. S. Longhi, “Third-harmonic generation in quasi-phase-matched χ(2) media with missing second harmonic,” Opt. Lett. 32, 1791–1793 (2007). [CrossRef]
  9. G. Porat, Y. Silberberg, A. Arie, and H. Suchowski, “Two photon frequency conversion,” Opt. Express 20, 3613–3619 (2012). [CrossRef]
  10. D. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, 2007).
  11. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem. 52, 763–809 (2001). [CrossRef]
  12. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104, 139–174 (2004). [CrossRef]
  13. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008). [CrossRef]
  14. H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011). [CrossRef]
  15. T. A. Laine and S. Stenholm, “Adiabatic processes in three-level systems,” Phys. Rev. A 53, 2501–2512 (1996). [CrossRef]
  16. G. S. Vasilev, A. Kuhn, and N. V. Vitanov, “Optimum pulse shapes for stimulated Raman adiabatic passage,” Phys. Rev. A 80, 013417 (2009). [CrossRef]
  17. G. Dridi, S. Gurin, V. Hakobyan, H. R. Jauslin, and H. Eleuch, “Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses,” Phys. Rev. A 80, 043408 (2009). [CrossRef]
  18. Xi Chen, I. Lizuain, A. Ruschhaupt, D. Gury-Odelin, and J. G. Muga1, “Shortcut to adiabatic passage in two-and three-level atoms,” Phys. Rev. Lett. 105, 123003 (2010). [CrossRef]
  19. A. H. Reshak, I. V. Kityk, and S. Auluck, “Investigation of the linear and nonlinear optical susceptibilities of KTiOPO4single crystals: theory and experiment,” J. Phys. Chem. B 114, 16705–16712 (2010). [CrossRef]
  20. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999). [CrossRef]
  21. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Appl. Opt. 42, 6661–6665 (2003). [CrossRef]
  22. A. Dudelzak, P. P. Proulx, V. Denks, V. Murk, and V. Nagirnyi, “Anisotropic fundamental absorption edge of KTiOPO4crystals,” J. Appl. Phys. 87, 2110–2113 (2000). [CrossRef]
  23. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996). [CrossRef]
  24. A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, “Fabrication of submicrometer quasi-phasematched devices in KTP and RKTP,” Opt. Mater. Express 1, 1319–1325 (2011). [CrossRef]
  25. M. T. Anderson, M. L. F. Phillips, M. B. Sinclair, and G. D. Stucky, “Synthesis of transition-metal-doped KTiOPO4 and lanthanide-doped RbTiOAsO4 isomorphs that absorb visible light,” Chem. Mater. 8, 248–256 (1996). [CrossRef]
  26. R. Dietrich, K. Meerholz, C. Brauchle, J. Wichern, and P. Boldt, “Phase-matched second-harmonic generation due to anomalous dispersion: tailoring of the refractive indices in three-component systems,” Chem. Phys. Lett. 280, 119–126 (1997). [CrossRef]
  27. S. Cabuk, “The nonlinear optical susceptibility and electro-optic tensor of ferroelectrics: first-principle study,” Cent. Eur. J. Phys. 10, 239–252 (2012). [CrossRef]
  28. H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic Kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144, 75–81 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited