OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2935–2943

Robust topology design of periodic grating surfaces

Kasper Storgaard Friis and Ole Sigmund  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2935-2943 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002935


View Full Text Article

Enhanced HTML    Acrobat PDF (560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Modern nanoscale manufacturing techniques allow for a high degree of flexibility in designing surface microstructures and nanostructures. Injection molding of nanosized features allows for mass production of plastic components with a tailored nanostructure producing specific optical effects depending on the purpose. This work details the use of topology optimization for designing periodic polymer grating surfaces with complex optical properties. A method based on robust topology optimization is formulated for designing the nanostructure of plastic surfaces with extreme reflection or transmission properties. Topology optimization allows for free distribution of material but a mechanical constraint based on the fundamental free mechanical vibration frequency ensures connected structures. Several examples are given to illustrate the efficiency of the method.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.2770) Diffraction and gratings : Gratings
(240.6700) Optics at surfaces : Surfaces
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 4, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 31, 2012
Published: September 28, 2012

Citation
Kasper Storgaard Friis and Ole Sigmund, "Robust topology design of periodic grating surfaces," J. Opt. Soc. Am. B 29, 2935-2943 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2935


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. D. Chiffre, H. Kunzmann, G. N. Peggs, and D. A. Lucca, “Surfaces in precision engineering, microengineering and nanotechnology,” CIRP Ann. 52, 561–577 (2003). [CrossRef]
  2. L. Alting, F. Kimura, H. N. Hansen, and G. Bissacco, “Micro engineering,” CIRP Ann. 52, 635–657 (2003). [CrossRef]
  3. P. Utko, F. Persson, A. Kristensen, and N. B. Larsen, “Injection molded nanofluidic chips: fabrication method and functional tests using single-molecule DNA experiments,” Lab Chip 11, 303–308 (2011). [CrossRef]
  4. K. O. Andresen, M. Hansen, M. Matschuk, S. T. Jepsen, H. S. Sorensen, P. Utko, D. Selmeczi, T. S. Hansen, N. B. Larsen, N. Rozlosnik, and R. Taboryski, “Injection molded chips with integrated conducting polymer electrodes for electroporation of cells,” J. Micromech. Microeng. 20, 055010 (2010). [CrossRef]
  5. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt. 48, 4177–4190 (2009). [CrossRef]
  6. S. Banerjee, J. B. Cole, and T. Yatagai, “Colour characterization of a morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method,” Micron 38, 97–103 (2007). [CrossRef]
  7. K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24, 2375–2379 (2012). [CrossRef]
  8. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011). [CrossRef]
  9. D. C. Dobson, “Optimal design of periodic antireflective structures for the Helmholtz equation,” Eur. J. Appl. Math. 4, 321–339 (1993). [CrossRef]
  10. D. C. Dobson, “Optimal shape design of blazed diffraction gratings,” Appl. Math. Optim. 40, 61–78 (1999). [CrossRef]
  11. K. Fuchi, A. R. Diaz, E. Rothwell, R. Ouedraogo, and A. Temme, “Topology optimization of periodic layouts of dielectric materials,” Struct. Multidisc. Optim. 42, CP11–493 (2010). [CrossRef]
  12. M. P. Bendsoe and O. Sigmund, Topology Optimisation–Theory, Methods and Applications, 2nd ed. (Springer-Verlag, 2003).
  13. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss t-junction waveguide,” J. Opt. Soc. Am. B 22, 1191–1198 (2005). [CrossRef]
  14. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley-IEEE, 2002).
  15. F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397 (2011). [CrossRef]
  16. J. S. Jensen, “A note on sensitivity analysis of linear dynamic systems with harmonic excitation,” Tech. rep. (Technical University of Denmark, Department of Mechanical Engineering, 2009).
  17. O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidisc. Optim. 33, 401–424 (2007). [CrossRef]
  18. J. Guest, J. Prevost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Num. Methods Eng. 61, 238–254 (2004). [CrossRef]
  19. F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidisc. Optim. 43, 767–784 (2011). [CrossRef]
  20. O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mech. Sin. 25, 227–239 (2009). [CrossRef]
  21. K. Svanberg, “Method of moving asymptotes–a new method for structural optimization,” Int. J. Num. Methods Eng. 24, 359–373 (1987). [CrossRef]
  22. M. Schevenels, B. S. Lazarov, and O. Sigmund, “Robust topology optimization accounting for spatially varying manufacturing errors,” Comput. Methods Appl. Mech. Eng. 200, 3613–3627 (2011). [CrossRef]
  23. E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Struct. Multidisc. Optim. 43, 1–16 (2011). [CrossRef]
  24. J. S. Jensen, “Topology optimization of dynamics problems with Padé approximants,” Int. J. Num. Methods Eng. 72, 1605–1630 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited