OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2964–2970

Plasmonic photonic bandgaps robust to disorder in two-dimensional plasmonic crystals

Borislav Vasić and Radoš Gajić  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2964-2970 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bottom-up fabrication methods are a promising approach for fabrication of three-dimensional photonic structures. These methods are cheap and relatively simple, but they always result in randomized photonic structures. For this reason, we investigate robustness of photonic bandgaps (PBGs) in two-dimensional plasmonic crystals (PlCs) to the four types of disorder: disorder in rod position, disorder in rod radius, disorder in rod cross section, and disorder due to missing rods. We compare behavior of two types of PBGs: Bragg PBGs, which arise due to Bragg reflections, and plasmonic PBGs due to localized surface plasmon resonances for electric field normal to the rods. Bragg PBGs are sensitive to the disorder since they stem from collective reflections within PlCs. On the other hand, the plasmonic PBGs are quite robust to the disorder since they arise from plasmonic resonances in single inclusions and they are not related to any collective phenomena. Therefore, applications of plasmonic PBGs could facilitate wide utilization of photonic bandgap media fabricated by bottom-up fabrication methods.

© 2012 Optical Society of America

OCIS Codes
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials
(160.5293) Materials : Photonic bandgap materials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: August 10, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: September 5, 2012
Published: September 28, 2012

Borislav Vasić and Radoš Gajić, "Plasmonic photonic bandgaps robust to disorder in two-dimensional plasmonic crystals," J. Opt. Soc. Am. B 29, 2964-2970 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals (Princeton University, 2008).
  2. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20, 1116–1124 (2010). [CrossRef]
  3. J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23, 30–69 (2011). [CrossRef]
  4. A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8, 4033–4038 (2008). [CrossRef]
  5. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008). [CrossRef]
  6. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19, 9607–9616 (2011). [CrossRef]
  7. S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5, 6586–6592 (2011). [CrossRef]
  8. J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, “A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles,” Opt. Mater. Express 2, 269–278 (2012). [CrossRef]
  9. J. Yao, Y. Wang, K.-T. Tsai, Z. Liu, X. Yin, G. Bartal, A. M. Stacy, Y.-L. Wang, and X. Zhang, “Design, fabrication and characterization of indefinite metamaterials of nanowires,” Phil. Trans. R. Soc. A 369, 3434–3446 (2011). [CrossRef]
  10. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-binding parametrization for photonic band gap materials,” Phys. Rev. Lett. 81, 1405–1408 (1998). [CrossRef]
  11. V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999). [CrossRef]
  12. G. Veronis, R. W. Dutton, and S. Fan, “Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range,” J. Appl. Phys. 97, 093104 (2005). [CrossRef]
  13. J. M. Pitarke, J. E. Inglesfield, and N. Giannakis, “Surface-plasmon polaritons in a lattice of metal cylinders,” Phys. Rev. B 75, 165415 (2007). [CrossRef]
  14. E. Lidorikis, S. Egusa, and J. D. Joannopoulos, “Effective medium properties and photonic crystal superstructures of metallic nanoparticle arrays,” J. Appl. Phys. 101, 054304 (2007). [CrossRef]
  15. C. Rockstuhl and T. Scharf, “A metamaterial based on coupled metallic nanoparticles and its band-gap property,” J. Microsc. 229, 281–286 (2008). [CrossRef]
  16. A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270(2007). [CrossRef]
  17. C.-p. Huang, X.-g. Yin, Q.-j. Wang, H. Huang, and Y.-y. Zhu, “Long-wavelength optical properties of a plasmonic crystal,” Phys. Rev. Lett. 104, 016402 (2010). [CrossRef]
  18. T. V. Teperik, F. J. García de Abajo, V. V. Popov, and M. S. Shur, “Strong terahertz absorption bands in a scaled plasmonic crystal,” Appl. Phys. Lett. 90, 251910 (2007). [CrossRef]
  19. J. Leon and T. Taliercio, “Large tunable photonic band gaps in nanostructured doped semiconductors,” Phys. Rev. B 82, 195301 (2010). [CrossRef]
  20. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011). [CrossRef]
  21. G. Garcia, R. Buonsati, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011). [CrossRef]
  22. B. Vasić and R. Gajić, “Broadband and subwavelength terahertz modulators using tunable plasmonic crystals with semiconductor rods,” J. Phys. D 45, 095101 (2012). [CrossRef]
  23. S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011). [CrossRef]
  24. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999), pp. 67–68.
  25. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011). [CrossRef]
  26. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011). [CrossRef]
  27. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010). [CrossRef]
  28. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012). [CrossRef]
  29. A. R. McGurn and A. A. Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays,” Phys. Rev. B 48, 17576–17579 (1993).
  30. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994). [CrossRef]
  31. T. Ito and K. Sakoda, “Photonic bands of metallic systems. II. Features of surface plasmon polaritons,” Phys. Rev. B 64, 045117 (2001). [CrossRef]
  32. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D 44, 283001 (2011). [CrossRef]
  33. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B 59, 12767–12770 (1999). [CrossRef]
  34. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003). [CrossRef]
  35. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096–1098 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited