OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2980–2989

Speed-dependent effects in dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectrometry: experimental demonstration and validation of predicted line shape

Junyang Wang, Patrick Ehlers, Isak Silander, and Ove Axner  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2980-2989 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002980


View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Speed-dependent effects (SDEs) in both the absorption and dispersion modes of detection have been detected and scrutinized by the noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) technique. The present paper achieves four objectives: (i) it provides the first demonstration of SDEs detected in dispersion, (ii) it validates the expression for a speed-dependent Voigt (SDV) dispersion line-shape function that is derived in an accompanying paper, (iii) it illustrates the influence of SDEs on the NICE-OHMS technique, and (iv) it gives the first experimental comparison of SDEs for the absorption and dispersion modes of detection. Experiments were performed using an isolated transition in the v1+v3+v41-v41 band of acetylene [Pe(33) at 6439.371cm1] in the 100–250 Torr range at room temperature. It is shown that SDEs appear in both the absorption and dispersion modes of detection, that they can be well described by the suggested SDV dispersion line-shape function, and that they need to be taken into account if NICE-OHMS signals detected under optimal pressures are to be properly assessed.

© 2012 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(260.2030) Physical optics : Dispersion
(300.1030) Spectroscopy : Absorption
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: May 31, 2012
Revised Manuscript: August 9, 2012
Manuscript Accepted: August 24, 2012
Published: September 28, 2012

Citation
Junyang Wang, Patrick Ehlers, Isak Silander, and Ove Axner, "Speed-dependent effects in dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectrometry: experimental demonstration and validation of predicted line shape," J. Opt. Soc. Am. B 29, 2980-2989 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2980


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).
  2. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953). [CrossRef]
  3. P. R. Berman, “Speed-dependent collisional width and shift parameters in spectral profiles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1331–1342 (1972). [CrossRef]
  4. J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening. 1. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974). [CrossRef]
  5. M. Harris, E. L. Lewis, D. McHugh, and I. Shannon, “The full Voigt profile and collision time asymmetry for profiles of calcium 442.7 nm perturbed by krypton,” J. Phys. B 17, L661–L667 (1984). [CrossRef]
  6. P. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. 23, 498–506 (1975). [CrossRef]
  7. R. Ciurylo and A. S. Pine, “Speed-dependent line mixing profiles,” J. Quant. Spectrosc. Radiat. Transfer 67, 375–393 (2000). [CrossRef]
  8. R. Ciurylo and J. Szudy, “Line-mixing and collision-time asymmetry of spectral line shapes,” Phys. Rev. A 63, 042714 (2001). [CrossRef]
  9. A. Urbanowicz, A. Bielski, D. Lisak, R. Ciurylo, and R. S. Trawinski, “Asymmetry and speed-dependent effects on the 748.8 nm self-broadened neon line,” Eur. Phys. J. D 56, 17–25 (2010). [CrossRef]
  10. P. W. Anderson, “A method of synthesis of the statistical and impact theories of pressure broadening,” Phys. Rev. 86, 809–809 (1952). [CrossRef]
  11. J. Szudy and W. E. Baylis, “Unified Franck–Condon treatment of pressure broadening of spectral-lines,” J. Quant. Spectrosc. Radiat. Transfer 15, 641–668 (1975). [CrossRef]
  12. D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).
  13. G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984). [CrossRef]
  14. R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985). [CrossRef]
  15. D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987). [CrossRef]
  16. A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996). [CrossRef]
  17. B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997). [CrossRef]
  18. D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3<−2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000). [CrossRef]
  19. C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2240  cm−1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001). [CrossRef]
  20. G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepere, “Line profile study from diode laser spectroscopy in the CH4122v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003). [CrossRef]
  21. B. Martin, J. Walrand, G. Blanquet, J. P. Bouanich, and M. Lepere, “CO2-broadening coefficients in the v4+v5 band of acetylene,” J. Mol. Spectrosc. 236, 52–57 (2006). [CrossRef]
  22. F. Rohart, L. Nguyen, J. Buldyreva, J. M. Colmont, and G. Wlodarczak, “Lineshapes of the 172 and 602 GHz rotational transitions of HC15N,” J. Mol. Spectrosc. 246, 213–227 (2007). [CrossRef]
  23. B. Martin and M. Lepere, “N2-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008). [CrossRef]
  24. B. Martin and M. Lepere, “O2- and air-broadening coefficients in the ν4 band of CH412 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009). [CrossRef]
  25. G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009). [CrossRef]
  26. C. Claveau and A. Valentin, “Narrowing and broadening parameters for H2O lines perturbed by helium, argon and xenon in the 1170–1440  cm−1 spectral range,” Mol. Phys. 107, 1417–1422 (2009). [CrossRef]
  27. L. Fissiaux, M. Dhyne, and M. Lepere, “Diode-laser spectroscopy: pressure dependence of N2-broadening coefficients of lines in the v4+v5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009). [CrossRef]
  28. M. J. Cich, C. P. McRaven, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Temperature-dependent pressure broadened line shape measurements in the v1+v3 band of acetylene using a diode laser referenced to a frequency comb,” Appl. Phys. B, to be published. [CrossRef]
  29. M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010). [CrossRef]
  30. A. Cygan, D. Lisak, R. S. Trawinski, and R. Ciurylo, “Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant,” Phys. Rev. A 82, 032515 (2010). [CrossRef]
  31. M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepere, “Self-collisional broadening and shift coefficients of lines in the v4+v5 band of C212H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979 (2011). [CrossRef]
  32. M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding H2O18 molecules,” Phys. Rev. A 83052506 (2011). [CrossRef]
  33. A. Cygan, D. Lisak, S. Wojtewicz, J. Domyslawska, J. T. Hodges, R. S. Trawinski, and R. Ciurylo, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012). [CrossRef]
  34. M. D. De Vizia, A. Castrillo, E. Fasci, L. Moretti, F. Rohart, and L. Gianfrani, “Speed dependence of collision parameters in the H2O18 near-IR spectrum: experimental test of the quadratic approximation,” Phys. Rev. A 85, 062512 (2012). [CrossRef]
  35. The dispersive part of a speed-dependent response function (e.g., of Lorentzian or Voigt form) has occasionally been used to describe line asymmetry in absorption spectra [5]. However, to our knowledge, it has not previously been used to describe the response of spectroscopic techniques detecting dispersion.
  36. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef]
  37. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  38. J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997). [CrossRef]
  39. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  40. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999). [CrossRef]
  41. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008). [CrossRef]
  42. A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972). [CrossRef]
  43. G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980). [CrossRef]
  44. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude-modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985). [CrossRef]
  45. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007). [CrossRef]
  46. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS–improved detectability,” Opt. Express 15, 10822–10831 (2007). [CrossRef]
  47. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008). [CrossRef]
  48. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689–14702 (2008). [CrossRef]
  49. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009). [CrossRef]
  50. A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011). [CrossRef]
  51. I. Silander, P. Ehlers, J. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29, 916–923 (2012). [CrossRef]
  52. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008). [CrossRef]
  53. T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996). [CrossRef]
  54. H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003). [CrossRef]
  55. T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1–0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723 (2008). [CrossRef]
  56. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009). [CrossRef]
  57. P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 µm,” Appl. Phys. B 103, 451–459 (2011). [CrossRef]
  58. J. Westberg, L. Lathdavong, C. M. Dion, J. Shao, P. Kluczynski, S. Lundqvist, and O. Axner, “Quantitative description of Faraday modulation spectrometry in terms of the integrated linestrength and 1st Fourier coefficients of the modulated lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 111, 2415–2433 (2010). [CrossRef]
  59. B. C. Chang and T. J. Sears, “High resolution near-infrared electronic spectroscopy of HCBr,” J. Chem. Phys. 105, 2135–2140 (1996). [CrossRef]
  60. M. L. Hause, G. E. Hall, and T. J. Sears, “Sub-Doppler laser absorption spectroscopy of the A2Πi−X2∑+ (1, 0) band of CN: measurement of the N14 hyperfine parameters in A2Π CN,” J. Mol. Spectrosc. 253, 122–128 (2009). [CrossRef]
  61. G. E. Hall, T. J. Sears, and H. G. Yu, “Rotationally resolved spectrum of the A~(060)−X~(000) band of HCBr,” J. Mol. Spectrosc. 235, 125–131 (2006). [CrossRef]
  62. Z. Wang, R. G. Bird, H. G. Yu, and T. J. Sears, “Hot bands in jet-cooled and ambient temperature spectra of chloromethylene,” J. Chem. Phys. 124074314 (2006). [CrossRef]
  63. J. C. Bloch, R. W. Field, G. E. Hall, and T. J. Sears, “Time-resolved frequency-modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994). [CrossRef]
  64. B. C. Chang and T. J. Sears, “Frequency-modulation transient absorption-spectrum of the HCCl 1A′′(0,0,0)←X1A′(0,0,0) transition,” J. Chem. Phys. 102, 6347–6353 (1995). [CrossRef]
  65. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification,” J. Opt. Soc. Am. B 28, 2390–2401 (2011). [CrossRef]
  66. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner, “Speed-dependent Voigt dispersion line-shape function: applicable to techniques measuring dispersion signals,” J. Opt. Soc. Am. B 29, 2971–2979 (2012). [CrossRef]
  67. P. Ehlers, J. Wang, I. Silander, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10−12  cm−1 Hz−1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012). [CrossRef]
  68. H. M. Pickett, “Effects of velocity averaging on the shapes of absorption lines,” J. Chem. Phys. 73, 6090–6094 (1980). [CrossRef]
  69. C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 112, 980–989 (2011). [CrossRef]
  70. F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “N2- and O2-broadening coefficients and profiles for millimeter lines of N2O14,” J. Mol. Spectrosc. 222, 159–171 (2003). [CrossRef]
  71. F. Rohart, H. Mader, and H. W. Nicolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions—studies on CH3F by millimeter-wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994). [CrossRef]
  72. C. D. Boone, K. A. Walker, and P. F. Bernath, “Speed-dependent Voigt profile for water vapor in infrared remote sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 105, 525–532 (2007). [CrossRef]
  73. A. Foltynowicz, J. Y. Wang, P. Ehlers, and O. Axner, “Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime,” Opt. Express 18, 18580–18591 (2010). [CrossRef]
  74. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  75. R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984). [CrossRef]
  76. J. Y. Wang, P. Ehlers, I. Silander, and O. Axner are preparing a manuscript to be called “Accuracy of the assessment of spectroscopic parameters by the NICE-OHMS technique.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited