OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2990–2994

Acceleration of carrier recovery in a quantum well semiconductor optical amplifier due to the tunneling effect

Xi Huang, Cui Qin, Yu Yu, and Xinliang Zhang  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2990-2994 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002990


View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we theoretically demonstrate that carrier recovery can be accelerated through the tunneling effect in a novel (to our knowledge) quantum well (QW) semiconductor optical amplifier. In the active region, we design the repeated element, including a shallow QW and a following deep QW. Through numerical calculation, we find this novel structure is helpful for improving the dynamic characteristics. In the single element, the shallow QW acts as a perfect carrier reservoir, while the deep QW acts as a “real” active region. Gain recovery time is shortened significantly.

© 2012 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.1150) Optical devices : All-optical devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 15, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: September 1, 2012
Published: September 28, 2012

Citation
Xi Huang, Cui Qin, Yu Yu, and Xinliang Zhang, "Acceleration of carrier recovery in a quantum well semiconductor optical amplifier due to the tunneling effect," J. Opt. Soc. Am. B 29, 2990-2994 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2990


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, N. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999). [CrossRef]
  2. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” IEEE J. Lightwave Technol. 14, 942–954 (1996). [CrossRef]
  3. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320  Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” IEEE J. Lightwave Technol. 25, 103–108 (2007). [CrossRef]
  4. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. d. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160  Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” IEEE J. Lightwave Technol. 24, 230–236 (2006). [CrossRef]
  5. R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19, 889–991 (1994). [CrossRef]
  6. X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. L. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47, 819–826 (2011). [CrossRef]
  7. CIP Technologies, “Semiconductor optical amplifier application notes—telecoms,” http://www.ciphotonics.com/download/application-note/soa-application-notes-telecoms.pdf (2011).
  8. C. Qin, X. Huang, and X. L. Zhang, “Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 1443–1450 (2011). [CrossRef]
  9. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Neilson, “Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,” IEEE Photon. Technol. Lett. 18, 2323–2325 (2006). [CrossRef]
  10. J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Elsevier Science, 2003).
  11. C. C. Sh and C. S. Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1, 218–229 (1995). [CrossRef]
  12. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  13. T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well,” IEEE J. Quantum Electron. 30, 562–570 (1994). [CrossRef]
  14. D. Dragoman, “Tunneling time asymmetry in semiconductor heterostructures,” IEEE J. Quantum Electron. 35, 1887–1893 (1999). [CrossRef]
  15. V. V. Lysak, I. A. Sukhoivanov, O. V. Shulika, I. M. Safonov, and Y. T. Lee, “Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1362–1364 (2006). [CrossRef]
  16. V. V. Lysak, H. Kawaguchi, I. A. Sukhoivanov, T. Katayama, and A. V. Shulika, “Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers,” IEEE J. Quantum Electron. 41, 797–807 (2005). [CrossRef]
  17. A. Reale, A. Di Carlo, P. Lugli, D. Campi, A. Cacciatore, A. Stano, and G. Fornuto, “Study of gain compression mechanisms in multiple-quantum-well In1-xGaxAs semiconductor optical amplifiers,” IEEE J. Quantum Electron. 35, 1697–1703 (1999). [CrossRef]
  18. M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, “Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches,” Opt. Express 14, 331–347 (2006). [CrossRef]
  19. J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited