OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3000–3005

Characterization and inhibition of photorefractive optical damage of swift heavy ion irradiation waveguides in LiNbO3

Mariano Jubera, Angel García-Cabañes, Mercedes Carrascosa, José Olivares, and Fabian Lüedtke  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 3000-3005 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003000


View Full Text Article

Enhanced HTML    Acrobat PDF (372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photorefractive effect and the corresponding optical damage thresholds of novel LiNbO 3 waveguides fabricated by swift ion irradiation have been investigated. TE- and TM-mode operation have been characterized, and the influence of the beam propagation length analyzed. Optical damage levels similar to those of proton-exchanged waveguides have been found. In order to reduce optical damage, the influence of temperature has been investigated. An increase of more than a factor of 100 in the optical damage threshold has been obtained by moderate heating up to 90°C. The results are briefly discussed under the two-center model for the photorefractive effect in undoped LiNbO 3 , and compared with data from other types of LiNbO 3 waveguides.

© 2012 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(190.5330) Nonlinear optics : Photorefractive optics
(230.4320) Optical devices : Nonlinear optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: July 6, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: September 5, 2012
Published: October 3, 2012

Citation
Mariano Jubera, Angel García-Cabañes, Mercedes Carrascosa, José Olivares, and Fabian Lüedtke, "Characterization and inhibition of photorefractive optical damage of swift heavy ion irradiation waveguides in LiNbO3," J. Opt. Soc. Am. B 29, 3000-3005 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-3000


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A 201, 253–283 (2004). [CrossRef]
  2. D. Kip and M. Wesner, “Photrefractive waveguides,” in Photorefractive Materials and Their Applications I, P. Gunter and J. P. Huignard, eds. (Springer, 2006), pp. 289–316.
  3. T. Volk, M. Wolecke, and N. Rubinina, “Optical damage resistance in lithium niobate,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer, 2007), pp. 165–203.
  4. S. M. Kostritskii, “Photorefractive effect in LiNbO3-based integrated-optical circuits at wavelengths of third telecom window,” Appl. Phys. B 95, 421–428, (2009). [CrossRef]
  5. M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3, 510–513 (2009). [CrossRef]
  6. F. Agulló-López, G. F. Calvo, and M. Carrascosa, “Fundamentals of photorefractive phenomena,” in Photorefractive Materials and Their Applications I, P. Günter and J. P. Huignard, eds. (Springer, 2006), pp. 43–77.
  7. J. R. Schwesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, “Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1973–1987 (2011). [CrossRef]
  8. A. Yamada, H. Tamada, and M. Saltoh, “Photorefractive damage in LiNbO3 thin-film optical waveguides grown by liquid phase epitaxy,” J. Appl. Phys. 76, 1776–1783 (1994). [CrossRef]
  9. O. Caballero-Calero, A. Alcázar, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Optical damage in X-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006). [CrossRef]
  10. F. Cheng, “Photonic guiding structures in LiNbO3 crystals produced by energetic ion beam,” J. Appl. Phys. 106, 081101 (2009). [CrossRef]
  11. J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3: analyses under the two-center model,” Appl. Phys. B 79, 351–358 (2004). [CrossRef]
  12. M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115–120 (2008). [CrossRef]
  13. J. Villarroel, J. Carnicero, F. Ludtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: aplication to planar waveguides,” Opt. Express 18, 20852–20861 (2010). [CrossRef]
  14. E. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]
  15. H. Hu, F. Lu, F. Chen, B. Shi, K. Wang, and D. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224–5226 (2001). [CrossRef]
  16. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correa, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in x-cut LiNbO3: planar optical waveguides formation and characterization,” J. Appl. Phys. 92, 6477–6483 (2002). [CrossRef]
  17. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501 (2005). [CrossRef]
  18. J. Olivares, A. Garcia-Navarro, A. Méndez, F. Agulló-López, G. García, A. García-Cabañes, and M. Carrascosa, “Novel optical waveguides by in-depth controlled electronic damage with swift ions,” Nucl. Instrum. Methods B 257, 765–770 (2007). [CrossRef]
  19. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated luthium niobate: structure and kinetics,” J. Appl. Phys. 101, 033512 (2007). [CrossRef]
  20. M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, F. Agullo-López, A. Méndez, and J. B. Ramiro, “Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation,” Appl. Phys. B 107, 157–162 (2012). [CrossRef]
  21. J. Villarroel, M. Carrascosa, A. García-Cabañes, O. Caballero-Calero, M. Crespillo, and J. Olivares, “Photorefractive response and optical damage of lithium niobate optical waveguides produced by swift-heavy ion irradiation,” Appl. Phys. B 95, 429–433 (2009). [CrossRef]
  22. http://www.cmam.uam.es .
  23. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides. a simple method,” Appl. Opt. 22, 3892–3894 (1983). [CrossRef]
  24. F. Luedtke, J. Villarroel, A. García-Cabañes, K. Buse, and M. Carrascosa, “Correlation between photorefractive index changes and optical damage thresholds in z-cut proton-exchanged-LiNbO3 waveguides,” Opt. Express 17, 658–665 (2009). [CrossRef]
  25. O. Caballero, J. Carnicero, A. Alcazar, G. de la Paliza, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Light intensity measurements in optical waveguides using prism couplers,” J. Appl. Phys. 102, 074509 (2007). [CrossRef]
  26. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  27. Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorrefraction,” Appl. Phys. Lett. 66, 280–282 (1995). [CrossRef]
  28. J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010). [CrossRef]
  29. J. Rams, A. Alcazar-de-Velasco, M. Carrascosa, J. M. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000). [CrossRef]
  30. A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005). [CrossRef]
  31. B. Chen, J. Fonseca-Campos, W. Liang, Y. Wang, and C. Q. Xu, “Wavelength and temperature dependence of photorefractive effect in quasi-phase-matched LiNbO3 waveguides,” Appl. Phys. Lett. 89, 043510 (2006). [CrossRef]
  32. L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendira, “Temperature dependence of the thermo-optic coefficient of LiNbO3, from 300 to 515 K in the visible and infrared regions,” J. Appl. Phys. 98, 036101 (2005). [CrossRef]
  33. O. Caballero, A. Alcazar, J. Herrero, J. Carnicero, C. Ong, M. Domenech, G. Lifante, A. García-Cabañes, J. M. Cabrera, and M. Carrascosa, “Comparative study of optical damage and photovoltaic currents in planar LiNbO3 waveguides,” Proc. SPIE 5840, 695–702 (2005). [CrossRef]
  34. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–283 (1985). [CrossRef]
  35. J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, “Light intensity dependence of the photorefractive holographic response and dark decay of α-phase PE waveguides,” J. Opt. A 10, 104008 (2008). [CrossRef]
  36. A. Ikeda, T. Oi, K. Nakayama, Y. Otsuka, and Y. Fujii, “Temperature and electric field dependences of optical damage in proton-exchanged waveguides formed on MgO-doped lithium niobate crystals,” Jpn. J. Appl. Phys. 44, 1407–1409 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited