OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3006–3009

Fabrication method of small-diameter hollow waveguides for terahertz waves

Shunsuke Sato, Takashi Katagiri, and Yuji Matsuura  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 3006-3009 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003006


View Full Text Article

Enhanced HTML    Acrobat PDF (318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To develop a thin and flexible hollow waveguide for terahertz (THz) waves that can be applied to endoscopic applications, a new (to our knowledge) fabrication method is proposed in which thin polymer tubing is first drawn and then a silver layer is formed on the outside of the tubing. By using this method, a thick dielectric layer, which was difficult to form by liquid-phase deposition, is easily obtained with high accuracy in the thickness. A transmission loss at 1.5 THz measured by a Fourier transform IR spectrometer was 3.0 dB for a 50 cm long, 1 mm inner-diameter waveguide. It is shown that the transmission losses are not affected by the bending of the waveguide when the bending radius is larger than around 10 cm.

© 2012 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: July 13, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: September 11, 2012
Published: October 3, 2012

Citation
Shunsuke Sato, Takashi Katagiri, and Yuji Matsuura, "Fabrication method of small-diameter hollow waveguides for terahertz waves," J. Opt. Soc. Am. B 29, 3006-3009 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-3006


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47, 3853–3863 (2002). [CrossRef]
  2. S. J. Oh, J. Kang, I. Maeng, J. Suh, Y. Huh, S. Haam, and J. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17, 3469–3475 (2009). [CrossRef]
  3. L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguide,” Opt. Lett. 31, 306–308 (2006). [CrossRef]
  4. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6340–6351 (2008). [CrossRef]
  5. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguide,” Opt. Express 14, 9944–9954 (2006). [CrossRef]
  6. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguides,” Jpn. J. Appl. Phys. 43, L317–L319 (2004). [CrossRef]
  7. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” IEEE J. Lightwave Technol. 23, 2469–2473 (2005). [CrossRef]
  8. K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004). [CrossRef]
  9. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13, 511–518 (2005). [CrossRef]
  10. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [CrossRef]
  11. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007). [CrossRef]
  12. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007). [CrossRef]
  13. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010). [CrossRef]
  14. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008). [CrossRef]
  15. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984). [CrossRef]
  16. M. Miyagi, “Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment,” J. Lightwave Technol. LT-3, 303–307 (1985). [CrossRef]
  17. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef]
  18. E. Pone, C. Dubois, N. Gu, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, and M. Skorobogatiy, “Drawing of the hollow all-polymer Bragg fibers,” Opt. Express 14, 5838–5852 (2006). [CrossRef]
  19. W. R. Folks, S. K. Pandey, and G. Boreman, “Refractive index at THz frequencies of various plastics,” in Optical Terahertz Science and Technology, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MD10.
  20. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. Zhou, J. Luo, A. K. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited