OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3072–3077

Posterior quantum dynamics for a continuous diffusion observation of a coherent channel

Anita Dąbrowska and Przemysław Staszewski  »View Author Affiliations

JOSA B, Vol. 29, Issue 11, pp. 3072-3077 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the Belavkin filtering equation for the intense balanced heterodyne detection in a unitary model of an indirect observation. The measuring apparatus modelled by a Bose field is initially prepared in a coherent state and the observed process is a diffusion one. We prove that this filtering equation is relaxing: any initial square-integrable function tends asymptotically to a coherent state with an amplitude depending on the coupling constant and the initial state of the apparatus. The time development of a squeezed coherent state is studied and compared with the previous results obtained for the measuring apparatus prepared initially in the vacuum state.

© 2012 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: July 17, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 20, 2012
Published: October 18, 2012

Anita Dąbrowska and Przemysław Staszewski, "Posterior quantum dynamics for a continuous diffusion observation of a coherent channel," J. Opt. Soc. Am. B 29, 3072-3077 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Hudson and K. R. Parthasarathy, “Quantum Ito’s formula and stochastic evolutions,” Commun. Math. Phys. 93, 301–323 (1984). [CrossRef]
  2. K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhäuser, 1992).
  3. V. P. Belavkin, “A posterior Schrödinger equation for continuous nondemolition measurement,” J. Math. Phys. 31, 2930–2934 (1990). [CrossRef]
  4. A. Barchielli and V. Belavkin, “Measurement continuous in time and a posteriori states in quantum mechanics,” J. Phys. A: Math. Gen. 24, 1495–1514 (1991). [CrossRef]
  5. V. P. Belavkin, “Measurement, filtering and control in quantum open dynamical systems,” Rep. Math. Phys. 43, A405–A425 (1999). [CrossRef]
  6. V. P. Belavkin, “Quantum causality, decoherence, trajectories and information,” Rep. Prog. Phys. 65, 353–420 (2002). [CrossRef]
  7. A. Barchielli and A. M. Paganoni, “Detection theory in quantum optics: stochastic representation,” Quantum Opt. 8, 133–156 (1996). [CrossRef]
  8. J. E. Gough and C. Köstler, “Quantum filtering in coherent states,” Commun. Stoch. Anal. 4, 505–521 (2010).
  9. A. Da¸browska and P. Staszewski, “Filtering equation for measurement of a coherent channel,” J. Opt. Soc. Am. B 28, 1238–1244 (2011). [CrossRef]
  10. Ch. Gerry and P. Knight, Introductory Quantum Optics(Cambridge University, 2005).
  11. A. Da¸browska and P. Staszewski, “Squeezed coherent state undergoing a continuous nondemolition observation,” Phys. Lett. A 375, 3950–3955 (2011). [CrossRef]
  12. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, 1993).
  13. A. C. Doherty and H. Mabuchi, “Atoms in microcavities: quantum electrodynamics, quantum statistical mechanics, and quantum information science,” in Optical Microcavities, K. Vahala, ed. (World Scientific Press, 2004), pp. 367–414.
  14. H. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University, 2010).
  15. T. Brun, “A single model of quantum trajectories,” Am. J. Phys. 70, 719–737 (2002). [CrossRef]
  16. R. van Handel, J. K. Stockton, and H. Mabuchi, “Modelling and feedback control design for quantum state preparation,” J. Opt. B: Quantum Semiclass. Opt. 7, S179–S197 (2005). [CrossRef]
  17. K. Jacobs and D. Steck, “A straightforward introduction to continuous quantum measurement,” Contemp. Phys. 47, 279–303 (2006). [CrossRef]
  18. L. Bouten, R. van Handel, and M. James, “An introduction to quantum filtering,” SIAM J. Control Optim. 46, 2199–2241 (2007). [CrossRef]
  19. A. Barchielli, “Continual measurements in quantum mechanics and quantum stochastic calculus,” in Open Quantum Systems III. Recent Developments, S. Attal, A. Joye, and C.-A. Pillet, eds. (Springer, 2006), pp. 207–288.
  20. V. P. Belavkin and M. Guţă, eds. Quantum Stochastics and Information (World Scientific, 2006).
  21. A. Barchielli and M. Gregoratti, Quantum Trajectories and Measurement in Continuous Time: The Diffusive Case(Springer-Verlag, 2009).
  22. C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag, 2010).
  23. H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B 68, 1095–1108 (1999). [CrossRef]
  24. M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and H. Mabuchi, “Adaptive homodyne measurement of optical phase,” Phys. Rev. Lett. 89, 133602 (2002). [CrossRef]
  25. J. M. Geremia, J. K. Stockton, A. C. Doherty, and H. Mabuchi, “Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry,” Phys. Rev. Lett. 91, 250801 (2003). [CrossRef]
  26. J. M. Geremia, J. K. Stockton, and H. Mabuchi, “Tensor polarizability and dispersive quantum measurement of multilevel atoms,” Phys. Rev. A 73, 042112 (2006). [CrossRef]
  27. P. Goetsch and R. Graham, “Linear stochastic wave equation for continuously measured quantum system,” Phys. Rev. A 50, 5242–5255 (1994). [CrossRef]
  28. M. J. Collet and C. W. Gardiner, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985). [CrossRef]
  29. A. Barchielli, “Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics,” Quantum Opt. 2, 423–441 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited