OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3109–3113

Versatile laser system for experiments with cold atomic gases

Amita Bikram Deb, Ana Rakonjac, and Niels Kjærgaard  »View Author Affiliations

JOSA B, Vol. 29, Issue 11, pp. 3109-3113 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a simple and compact architecture for generating all-optical frequencies required for the laser cooling, state preparation, and detection of atoms in an ultracold rubidium-87 experiment from a single 780 nm laser source. In particular, repump light 6.5GHz away from the cooling transition is generated by using a high-bandwidth fiber-coupled electro-optic modulator (EOM) in a feedback loop configuration. The looped repump light generation scheme solves the problem of the limited power handling capabilities characteristic of fiber EOMs. We demonstrate the functionality of the system by creating a high-atom-number magneto-optical trap (MOT).

© 2012 Optical Society of America

OCIS Codes
(000.3110) General : Instruments, apparatus, and components common to the sciences
(230.2090) Optical devices : Electro-optical devices
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 4, 2012
Manuscript Accepted: September 19, 2012
Published: October 22, 2012

Amita Bikram Deb, Ana Rakonjac, and Niels Kjærgaard, "Versatile laser system for experiments with cold atomic gases," J. Opt. Soc. Am. B 29, 3109-3113 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature 425, 937–940 (2003). [CrossRef]
  2. D. Jaksch and P. Zoller, “The cold atom Hubbard toolbox,” Ann. Phys. 315, 5279 (2005). [CrossRef]
  3. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009). [CrossRef]
  4. A. Derevianko and H. Katori, “Colloquium: physics of optical lattice clocks,” Rev. Mod. Phys. 83, 331–348 (2011). [CrossRef]
  5. T. Köhler, K. Góral, and P. S. Julienne, “Production of cold molecules via magnetically tunable Feshbach resonances,” Rev. Mod. Phys. 78, 1311–1361 (2006). [CrossRef]
  6. K. Bongs, W. Brinkmann, H. Dittus, W. Ertmer, E. Göklü, G. Johannsen, E. Kajari, T. Könemann, C. Lämmerzahl, W. Lewoczko-Adamczyk, G. Nandi, A. Peters, E. M. Rasel, W. P. Schleich, M. Schiemangk, K. Sengstock, A. Vogel, R. Walser, S. Wildfang, and T. van Zoest, “Realization of a magneto-optical trap in microgravity,” J. Mod. Opt. 54, 2513–2522 (2007). [CrossRef]
  7. V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, and P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36, 4128–4130 (2011). [CrossRef]
  8. S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium,” Opt. Express 20, 8915–8919 (2012). [CrossRef]
  9. F. Lienhart, S. Boussen, O. Carraz, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm,” Appl. Phys. B 89, 177–180 (2007). [CrossRef]
  10. W. Diao, J. He, Z. Liu, B. Yang, and J. Wang, “Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9 GHz current-modulated diode laser,” Opt. Express 20, 7480–7487 (2012). [CrossRef]
  11. J. Appel, A. MacRae, and A. I. Lvovsky, “Versatile digital GHz phase lock for external cavity diode lasers,” Meas. Sci. Technol. 20, 055302 (2009). [CrossRef]
  12. R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode laser for two-frequency generation,” Rev. Sci. Instrum. 72, 2532–2534 (2001). [CrossRef]
  13. P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63, 905–908 (1995). [CrossRef]
  14. C. J. Myatt, N. R. Newbury, and C. E. Wieman, “Simplified atom trap by direct microwave modulation of a diode laser,” Opt. Lett. 18, 649–651 (1993). [CrossRef]
  15. E. W. Streed, A. P. Chikkatur, T. L. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. K. Campbell, D. E. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensate machines,” Rev. Sci. Instrum. 77, 023106 (2006). [CrossRef]
  16. W. Süptitz, G. Wokurka, F. Strauch, P. Kohns, and W. Ertmer, “Simultaneous cooling and trapping of Rb85 and Rb87 in a magneto-optical trap,” Opt. Lett. 19, 1571–1573 (1994). [CrossRef]
  17. F. B. J. Buchkremer, R. Dumke, Ch. Buggle, G. Birkl, and W. Ertmer, “Low-cost setup for generation of 3 GHz frequency difference phase-locked laser light,” Rev. Sci. Instrum. 71, 3306–3308 (2000). [CrossRef]
  18. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).
  19. V. Bolpasi and W. von Klitzing, “Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW,” Rev. Sci. Instrum. 81, 113108 (2010). [CrossRef]
  20. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hellemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000). [CrossRef]
  21. C. C. Davis, Lasers and Electro-optics: Fundamentals and Engineering (Cambridge University, 1996).
  22. I. Silander, P. Ehlers, J. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29, 916–923 (2012). [CrossRef]
  23. O. Caballero-Calero, A. García-Cabañes, J. M. Cabrera, M. Carrascosa, and A. Alczar, “Optical damage in x-cut proton exchanged LiNbO3 planar waveguides,” J. Appl. Phys. 100, 093103 (2006). [CrossRef]
  24. A. Rakonjac, A. B. Deb, S. Hoinka, D. Hudson, B. J. Sawyer, and N. Kjærgaard, “Laser based accelerator for ultracold atoms,” Opt. Lett. 37, 1085–1087 (2012). [CrossRef]
  25. R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, and P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77, 033105 (2006). [CrossRef]
  26. T. van Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, S. T. Seidel, W. Ertmer, E. Rasel, M. Eckart, E. Kajari, S. Arnold, G. Nandi, W. P. Schleich, R. Walser, A. Vogel, K. Sengstock, K. Bongs, W. Lewoczko-Adamczyk, M. Schiemangk, T. Schuldt, A. Peters, T. Könemann, H. Müntinga, C. Lämmerzahl, H. Dittus, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Bose-Einstein condensation in microgravity,” Science 328, 1540–1543 (2010). [CrossRef]
  27. A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjærgaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12, 065032 (2010). [CrossRef]
  28. Z. Chen, J. G. Bohnet, J. M. Weiner, and J. K. Thompson, “A low phase noise microwave source for atomic spin squeezing experiments in Rb87,” Rev. Sci. Instrum. 83, 044701 (2012). [CrossRef]
  29. F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003). [CrossRef]
  30. M. Oberst, F. Vewinger, and A. I. Lvovsky, “Time-resolved probing of the ground state coherence in rubidium,” Opt. Lett. 32, 1755–1757 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited