OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3157–3169

Analytical model for metal–insulator–metal mesh waveguide architectures

Charles Lin, Mohamed A. Swillam, and Amr S. Helmy  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 3157-3169 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003157


View Full Text Article

Enhanced HTML    Acrobat PDF (668 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal–insulator–metal (MIM) waveguide mesh structures utilize X-junctions as power distribution elements to create interference and feedback effects, thereby providing rich device functionality. We present a generalized analytical model for MIM mesh structures by incorporating a modified characteristic impedance model for MIM junctions into the scattering matrix formalism. The modified impedance model accounts for metal absorption and provides accurate prediction of plasmonic field distribution at X-junctions in terms of both magnitude and phase. Closed-form expressions for 2×1 and 2×2 MIM mesh architectures as well as MIM stub structures are then obtained and are dependent only on waveguide geometry and junction configuration. The model does not require numerically extracted parameters, and results agree, within a few percent, with those obtained from finite-difference time-domain method for both two-dimensional and three-dimensional waveguide geometries. The capability of the model for efficient design and optimization of junction-based MIM devices is demonstrated through the development of various filter and resonant devices.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 29, 2012
Revised Manuscript: September 4, 2012
Manuscript Accepted: September 5, 2012
Published: October 29, 2012

Citation
Charles Lin, Mohamed A. Swillam, and Amr S. Helmy, "Analytical model for metal–insulator–metal mesh waveguide architectures," J. Opt. Soc. Am. B 29, 3157-3169 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-3157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003). [CrossRef]
  2. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  4. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmonic slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  5. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006). [CrossRef]
  6. P. Berini, “Bulk and surface sensitivity of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008). [CrossRef]
  7. B. Lau, M. A. Swillam, and A. S. Helmy, “Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers,” Opt. Express 18, 27048–27059 (2010). [CrossRef]
  8. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006). [CrossRef]
  9. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavities,” Opt. Express 19, 13831–13838 (2011). [CrossRef]
  10. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690–695 (2006). [CrossRef]
  11. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009). [CrossRef]
  12. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36, 1500–1502 (2011). [CrossRef]
  13. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  14. E. Feigenbaum and M. Orenstein, “Perfect 4-way splitting in nano plasmonic X-junctions,” Opt. Express 15, 17948–17953 (2007). [CrossRef]
  15. F. Hu and Z. Zhou, “Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities,” J. Opt. Soc. Am. B 28, 2518–2523 (2005). [CrossRef]
  16. E. Feigenbaum and H. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104, 147402 (2010). [CrossRef]
  17. M. A. Swillam and A. S. Helmy, “Filter response of feedback plasmonic junctions,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ITuD4.
  18. M. A. Swillam and A. S. Helmy, “Feedback effects in plasmonic slot waveguides examined using a closed-form model,” Photon. Technol. Lett. 24, 497–499 (2012). [CrossRef]
  19. H. Nejati and A. Beirami, “Theoretical analysis of the characteristic impedance in metal-insulator-metal plasmonic transmission lines,” Opt. Lett. 37, 1050–1052 (2012). [CrossRef]
  20. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010). [CrossRef]
  21. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009). [CrossRef]
  22. Lumerical, “Multicoefficient material modelling in FDTD,” http://www.lumerical.com/solutions/whitepapers/fdtd_multicoefficient_material_modeling.html .
  23. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009). [CrossRef]
  24. X. Lin and X. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef]
  25. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008). [CrossRef]
  26. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010). [CrossRef]
  27. J. Tian, S. Yu, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited