OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3183–3191

Modeling of nonlinear propagation in fiber tapers

Jesper Lægsgaard  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 3183-3191 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003183


View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different numerical schemes for interpolation of fiber parameters along the taper are discussed and tested in numerical simulations on soliton propagation and generation of continuum radiation in short photonic-crystal fiber tapers.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 16, 2012
Revised Manuscript: September 28, 2012
Manuscript Accepted: October 3, 2012
Published: October 30, 2012

Citation
Jesper Lægsgaard, "Modeling of nonlinear propagation in fiber tapers," J. Opt. Soc. Am. B 29, 3183-3191 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-3183


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]
  2. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef]
  3. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004). [CrossRef]
  4. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). [CrossRef]
  5. M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005). [CrossRef]
  6. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408–9414(2006). [CrossRef]
  7. A. Kudlinski, A. George, J. Knight, J. Travers, A. Rulkov, S. Popov, and J. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006). [CrossRef]
  8. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117(2009). [CrossRef]
  9. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010). [CrossRef]
  10. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum—group-acceleration matching,” Opt. Lett. 36, 816–818 (2011). [CrossRef]
  11. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  12. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008). [CrossRef]
  13. X. Liu, J. Lægsgaard, and D. Turchinovich, “Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber,” Opt. Lett. 35, 913–915 (2010). [CrossRef]
  14. X. Liu, J. Lægsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond yb-fiber laser system based on photonic crystal fibers,” Opt. Express 18, 15475–15483 (2010). [CrossRef]
  15. X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37, 2769–2771 (2012). [CrossRef]
  16. O. Vanvincq, J. C. Travers, and A. Kudlinski, “Conservation of the photon number in the generalized nonlinear Schrödinger equation in axially varying optical fibers,” Phys. Rev. A 84, 063820 (2011). [CrossRef]
  17. M. Kolesik, E. M. Wright, and J. V. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers,” Appl. Phys. B 79, 293–300 (2004). [CrossRef]
  18. S. A. Vahid and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009). [CrossRef]
  19. M. D. Turner, T. M. Monro, and S. A. Vahid, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: stimulated Raman scattering,” Opt. Express 17, 11565–11581 (2009). [CrossRef]
  20. R. W. Hellwarth, “3rd-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977). [CrossRef]
  21. J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007). [CrossRef]
  22. J. Lægsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16, 9628–9644 (2008). [CrossRef]
  23. K. J. Blow and D. Wood, “Theoretical description of transient stimulated “Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  25. J. Lægsgaard, A. Bjarklev, and S. E. B. Libori, “Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation,” J. Opt. Soc. Am. B 20, 443–448 (2003). [CrossRef]
  26. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited