OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3192–3200

Double-negative atomic vapor assisted by two-photon quantum coherence

Jian Qi Shen  »View Author Affiliations

JOSA B, Vol. 29, Issue 11, pp. 3192-3200 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scenario for realizing simultaneously negative permittivity and permeability of a two-photon quantum-coherent atomic vapor is suggested in order to achieve a left-handed atomic medium with a negative refractive index. One of the remarkable features of the present scheme is that it can lead to a controllable manipulation of the negative refractive index of the atomic vapor. Since the electric- and magnetic-dipole allowed transitions of atoms can be excited by visible and infrared lightwaves, the refractive index of the atomic vapor can exhibit its negative refractive index at optical and near-optical frequency bands. This may be a new scheme to fabricate a negatively refracting material based on the quantum optical approach. Such a three-dimensionally isotropic negative refractive index at visible and infrared wavelengths induced by the two-photon-resonant quantum coherence would find a potential application in fabrication of superlenses for perfect imaging and subwavelength focusing.

© 2012 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(120.6710) Instrumentation, measurement, and metrology : Susceptibility
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Quantum Optics

Original Manuscript: September 6, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: October 3, 2012
Published: October 30, 2012

Jian Qi Shen, "Double-negative atomic vapor assisted by two-photon quantum coherence," J. Opt. Soc. Am. B 29, 3192-3200 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  4. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010). [CrossRef]
  5. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [CrossRef]
  6. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef]
  7. A. Lakhtakia, “Positive and negative Goos–Hänchen shifts and negative phase-velocity mediums,” Int. J. Electron. Commun. (AEU) 58, 229–231 (2004). [CrossRef]
  8. A. Lakhtakia, “Handedness reversal of circular Bragg phenomenon due to negative real permittivity and permeability,” Opt. Express 11, 716–722 (2003). [CrossRef]
  9. L. Chen, S. He, and L. Shen, “Finite-size effects of a left-handed material slab on the image quality,” Phys. Rev. Lett. 92, 107404 (2004). [CrossRef]
  10. X. C. Gao, “Geometric phases for photons in an optical fibre and some related predictions,” Chin. Phys. Lett. 19, 613–616 (2002). [CrossRef]
  11. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef]
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998). [CrossRef]
  13. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  14. C. R. Simovski and S. He, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Ω particles,” Phys. Lett. A 311, 254–263 (2003). [CrossRef]
  15. T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103-R (2005). [CrossRef]
  16. I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave Opt. Technol. Lett. 18, 2553–2556 (2006). [CrossRef]
  17. D. O. Guney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18, 12348–12353 (2010). [CrossRef]
  18. V. J. Logeeswaran, M. S. Islam, M. L. Chan, D. A. Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, “Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology,” Mater. Res. Soc. Symp. Proc. 919, 0919-J02-01 (2006).
  19. M. Ö. Oktel and Ö. E. Müstecaphoğlu, “Electromagnetically induced left-handedness in a dense gas of three-level atoms,” Phys. Rev. A 70, 053806 (2004). [CrossRef]
  20. J. Q. Shen, Z. C. Ruan, and S. He, “How to realize a negative refractive index material at the atomic level in an optical frequency range?,” J. Zhejiang Univ. Sci. (China) 5, 1322–1326(2004). [CrossRef]
  21. Q. Thommen and P. Mandel, “Electromagnetically induced left handedness in optically excited four-level atomic media,” Phys. Rev. Lett. 96, 053601 (2006). [CrossRef]
  22. Q. Thommen and P. Mandel, “Left-handed properties of erbium-doped crystals,” Opt. Lett. 31, 1803–1805 (2006). [CrossRef]
  23. C. M. Krowne and J. Q. Shen, “Dressed-state mixed-parity transitions for realizing negative refractive index,” Phys. Rev. A 79, 023818 (2009). [CrossRef]
  24. D. E. Sikes and D. D. Yavuz, “Negative refraction with low absorption using Raman transitions with magnetoelectric coupling,” Phys. Rev. A 82, 011806(R) (2010). [CrossRef]
  25. D. E. Sikes and D. D. Yavuz, “Negative refraction in a Raman chiral system,” The 41st Winter Colloquium on the Physics of Quantum Electronics (PQE-2011), Snowbird, Utah, USA (2–6 Jan. 2011).
  26. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 2001), Chap. 4, pp. 159–162.
  27. D. M. Cook, The Theory of the Electromagnetic Field (Prentice-Hall, 1975), Chap. 11.
  28. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), Chap. 7.
  29. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996). [CrossRef]
  30. A. V. Nikandrov and A. S. Chirkin, “Entangled quantum states in consecutive and cascade nonlinear optical processes,” J. Russ. Laser Res. 23, 81–91 (2002). [CrossRef]
  31. X. M. Hu and D. Du, “Enhancement of nonlinear-optical signals in a cascade three-level system,” Acta Phys. Sin. 55, 5236–5240 (2006).
  32. A. Wojcik, N. Yu, F. Capasso, and A. Belyanin, “Nonlinear optical interactions of laser modes in quantum cascade lasers,” J. Mod. Opt. 58, 727–742 (2011). [CrossRef]
  33. J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Low-loss negative refraction by laser-induced magnetoelectric cross coupling,” Phys. Rev. A 79, 063818 (2009). [CrossRef]
  34. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673(1995). [CrossRef]
  35. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001). [CrossRef]
  36. A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997). [CrossRef]
  37. S. Gasiorowicz, Quantum Physics, 3rd ed. (Wiley, 2003), pp. 193–264.
  38. T. A. M. van Kleef and P. F. A. Klinkenberg, “Spectral structure of neutral and ionized osmium,” Physica (Utrecht) 27, 83–94 (1961). [CrossRef]
  39. J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, 1–664 (1985). [CrossRef]
  40. J. Järvinen, J. Ahokas, S. Jaakkola, and S. Vasilyev, “Three-body recombination in two-dimensional atomic hydrogen gas,” Phys. Rev. A 72, 052713 (2005). [CrossRef]
  41. J. Ahokas, J. Järvinen, and S. Vasiliev, “Cold collision frequency shift in two-dimensional atomic hydrogen,” Phys. Rev. Lett. 98, 043004 (2007). [CrossRef]
  42. J. Ahokas, O. Vainio, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Stabilization of high-density atomic hydrogen in H2 films at T<0.5  K,” Phys. Rev. B 79, 220505(R) (2009). [CrossRef]
  43. J. Ahokas, O. Vainio, S. Novotny, J. Järvinen, V. V. Khmelenko, D. M. Lee, and S. Vasiliev, “Magnetic resonance study of H atoms in thin films of H2 at temperatures below 1 K,” Phys. Rev. B 81, 104516 (2010). [CrossRef]
  44. P. Arve, P. Jänes, and L. Thylén, “Propagation of two-dimensional pulses in electromagnetically induced transparency media,” Phys. Rev. A 69, 063809 (2004). [CrossRef]
  45. P. Jänes, J. Tidström, and L. Thylén, “Limits on optical pulse compression and delay bandwidth product in electromagnetically induced transparency media,” J. Lightwave Technol. 23, 3893–3899 (2005). [CrossRef]
  46. M. Davanço, P. Holmström, D. J. Blumenthal, and L. Thylén, “Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency,” J. Quantum Electron. 39, 608–613 (2003). [CrossRef]
  47. J. Siegert, S. Marcinkevičius, and Q. X. Zhao, “Carrier dynamics in modulation-doped InAs/GaAs quantum dots,” Phys. Rev. B 72, 085316 (2005). [CrossRef]
  48. O. Engström, Y. Fu, and A. Eghtedari, “Entropies associated with electron emission from InAs/GaAs quantum dots,” Phys. E 27, 380–384 (2005). [CrossRef]
  49. Y. Fu, O. Engström, and Y. Luo, “Emission rates for electron tunneling from InAs quantum dots to GaAs substrate,” J. Appl. Phys. 96, 6477–6481 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited