OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3201–3210

Virtual reference interferometry: theory and experiment

Michael A. Galle, Simarjeet S. Saini, Waleed S. Mohammed, and Li Qian  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 3201-3210 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003201


View Full Text Article

Enhanced HTML    Acrobat PDF (1698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work presents a detailed theoretical description of using virtual reference interferometry (VRI) for the measurement of chromatic dispersion in short fibers and components. Special consideration is given to the unique ability to reduce the bandwidth required for a measurement, to measure components in cascade, and to measure both narrowband and ultrashort devices. Measurement parameters for VRI-based systems are developed to provide an understanding of the constraints and limitations of the technique. Experimental validation of theory is then provided.

© 2012 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 19, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: October 2, 2012
Published: October 31, 2012

Citation
Michael A. Galle, Simarjeet S. Saini, Waleed S. Mohammed, and Li Qian, "Virtual reference interferometry: theory and experiment," J. Opt. Soc. Am. B 29, 3201-3210 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-3201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002).
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980). [CrossRef]
  3. M. Saleh and C. Teich, Fundamentals of Photonics (John Wiley and Sons, 2001).
  4. Liu Jia-Ming, Photonic Devices (Cambridge University, 2005).
  5. K. C. Chan and H. F. Liu, “Effect of third order dispersion on soliton-effect pulse compression,” Opt. Lett. 19, 49–51 (1994). [CrossRef]
  6. T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-harmonic generation in thermally poled twin-hole fiber using nanosecond and femtosecond laser pulses,” in Proceedings of IEEE LEOS Annual Meeting, 27–28 October (IEEE, 2003), pp. 413–414.
  7. T. Mizunami and T. Tsukada, “Quasi phase-matched second-harmonic generation in thermally poled twin-hole fiber by periodic UV depoling,” in Proceedings of 30th European Conference on Optical Communication, pt. 2, 5–9 September (IEEE, 2004), pp. 240–241.
  8. T. Mizunami, T. Tsukada, Y. Noi, and K. Horimoto, “Second-order nonlinearity and phase matching in thermally poled twin-hole fiber,” Proc. SPIE 5350, 115–122 (2004). [CrossRef]
  9. J. H. Wiesenfeld and J. Stone, “Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers,” J. Lightwave Technol. 2, 464 (1984). [CrossRef]
  10. J. Brendel, H. Zbinden, and N. Gisin, “Measurement of chromatic dispersion in optical fibers using pairs of correlated photons,” Opt. Commun. 151, 35–39 (1998). [CrossRef]
  11. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, “Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED’s,” IEEE Trans. Microw. Theory Tech. 82, 1497–1503 (1982). [CrossRef]
  12. L. Cherbi, M. Mehenni, and R. Aksas, “Experimental investigation of the modulation phase-shift method for the measure of the chromatic dispersion in a single-mode fiber coiled on a cover spool,” Microw. Opt. Technol. Lett. 48, 174–178 (2006). [CrossRef]
  13. Agilent Technologies, “Agilent 86038B photonic dispersion and loss analyzer,” http://cp.literature.agilent.com/litweb/pdf/5989-2325EN.pdf .
  14. L. G. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985). [CrossRef]
  15. T. Matsui, K. Nakajima, and I. Sankawa, “Dispersion compensation over all the telecommunication bands with double-cladding photonic crystal fiber,” J. Lightwave Technol. 25, 757–762 (2007). [CrossRef]
  16. D. Liu, W. Tong, S. Liu, and H. Liu, “Study on the fabrication techniques of photonic crystal fiber and PCF based structures,” Proc. SPIE 5722, 123–129 (2005). [CrossRef]
  17. D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Heidepreim, H. Ebendorff, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proceedings of IEEE WFOPC2005, 22–24 June (IEEE2005), pp. 1–9.
  18. P. Merrit, R. P. Tatam, and D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7, 703–716 (1989). [CrossRef]
  19. R. Cella and W. Wood, “Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry,” in Proceedings of the Sixth Optical Fiber Measurement Conference, 27 November (OFMC, 2001), pp. 207–210.
  20. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003). [CrossRef]
  21. J. Gehler and W. Spahn, “Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy,” Electron. Lett. 36, 338–340 (2000). [CrossRef]
  22. R. K. Hickernell, T. Kazumasa, M. Yamada, M. Shimizu, and M. Horiguchi, “Pump-induced dispersion of erbium-doped fiber measured by Fourier-transform spectroscopy,” Opt. Lett. 18, 19–21 (1993). [CrossRef]
  23. C. Palavicini, Y. Jaouën, G. Debarge, E. Kerrinckx, Y. Quiquempois, M. Douay, C. Lepers, A.-F. Obaton, and G. Melin, “Phase-sensitive optical low-coherence reflectometry technique applied to the characterization of photonic crystal fiber properties,” Opt. Lett. 30, 361–363 (2005). [CrossRef]
  24. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two photon absorption and self-phase modulation in silicon waveguides at 1.5 um wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [CrossRef]
  25. M. A. Galle, W. Mohammed, L. Qian, and P. W. E. Smith, “Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber,” Opt. Express 15, 16896–16908 (2007). [CrossRef]
  26. M. A. Galle, Single-arm Three Wave Interferometer for Measuring Dispersion in Short Lengths of Fiber (University of Toronto, 2007).
  27. P. Hlubina, “White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical core optical fibers,” Opt. Commun. 218, 283–289 (2003). [CrossRef]
  28. P. Hlubina, T. Martynkien, and W. Urbanczyk, “Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry,” Opt. Express 11, 2793–2798 (2003).
  29. J. Tignon, M. V. Marquezini, T. Hasch, and D. S. Chemals, “Spectral interferometry of semiconductor nanostructures,” IEEE J. Quantum Electron. 35, 510–522 (1999). [CrossRef]
  30. C. D. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling in Fourier transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000). [CrossRef]
  31. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006). [CrossRef]
  32. P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15, 11073–11081 (2007). [CrossRef]
  33. W. Mohammed, J. Meier, M. A. Galle, L. Qian, J. S. Aitchison, and P. W. E. Smith, “Linear and quadratic dispersion characterization of millimetre-length fibers and waveguides using common-path interferometry,” Opt. Lett. 32, 3312–3314(2007). [CrossRef]
  34. M. A. Galle, S. S. Saini, W. Mohammed, and L. Qian, “Chromatic dispersion measurements using virtually referenced interferometer,” Opt. Lett. 37, 1598–1600 (2012). [CrossRef]
  35. S. Vergnole, L. Delage, and F. Reynaud, “Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ‘OHANA project,” Opt. Commun. 232, 31–43 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited