OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3335–3343

Analysis of bistable memory in silica toroid microcavity

Wataru Yoshiki and Takasumi Tanabe  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3335-3343 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003335


View Full Text Article

Enhanced HTML    Acrobat PDF (614 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We model the nonlinear response of a silica toroid microcavity using coupled-mode theory and a finite-element method, and successfully obtain Kerr bistable operation that does not suffer from the thermo-optic effect by optimizing the fiber-cavity coupling. Our rigorous analysis reveals the possibility of demonstrating a Kerr bistable memory with a memory holding time of 500 ns at an extremely low energy consumption.

© 2012 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(140.3948) Lasers and laser optics : Microcavity devices
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 7, 2012
Revised Manuscript: October 20, 2012
Manuscript Accepted: October 20, 2012
Published: November 16, 2012

Virtual Issues
December 4, 2012 Spotlight on Optics

Citation
Wataru Yoshiki and Takasumi Tanabe, "Analysis of bistable memory in silica toroid microcavity," J. Opt. Soc. Am. B 29, 3335-3343 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Tsuda and T. Kurokawa, “Construction of an all-optical flip-flop by combination of 2 optical triodes,” Appl. Phys. Lett. 57, 1724–1726 (1990). [CrossRef]
  2. H. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  3. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  4. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photon. 1, 49–52 (2007). [CrossRef]
  5. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef]
  6. K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  7. M. Soljacic, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601 (2002). [CrossRef]
  8. M. Shafiei and M. Khanzadeh, “Low-threshold bistability in nonlinear microring tower resonator,” Opt. Express 18, 25509–25518 (2010). [CrossRef]
  9. L. Collot, V. Lefevreseguin, M. Brune, J. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused-silica microspheres,” Europhys. Lett. 23, 327–334 (1993). [CrossRef]
  10. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005). [CrossRef]
  11. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17, 21108–21117 (2009). [CrossRef]
  12. V. Almeida, and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004). [CrossRef]
  13. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  14. A. Shinya, S. Matsuo, Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16, 19382–19387 (2008). [CrossRef]
  15. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6, 248–252 (2012). [CrossRef]
  16. S. Spillane, T. Kippenberg, K. Vahala, K. Goh, E. Wilcut, and H. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  17. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef]
  18. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008). [CrossRef]
  19. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S.-i. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007). [CrossRef]
  20. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-lowpowers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010). [CrossRef]
  21. I. Razdolskiy, S. Berneschi, G. N. Conti, S. Pelli, T. V. Murzina, G. C. Righini, and S. Soria, “Hybrid microspheres for nonlinear Kerr switching devices,” Opt. Express 19, 9523–9528 (2011). [CrossRef]
  22. G. Ctistis, E. Yuce, A. Hartsuiker, J. Claudon, M. Bazin, J.-M. Gerard, and W. L. Vos, “Ultimate fast optical switching of a planar microcavity in the telecom wavelength range,” Appl. Phys. Lett. 98, 161114 (2011). [CrossRef]
  23. K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron. 51, 1376–1380 (2007). [CrossRef]
  24. M. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003). [CrossRef]
  25. G. Kozyreff, J. L. Dominguez-Juarez, and J. Martorell, “Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators,” Phys. Rev. A 77, 043817 (2008). [CrossRef]
  26. J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011). [CrossRef]
  27. H. Rokhsari, S. Spillane, and K. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029–3031 (2004). [CrossRef]
  28. A. Yariv, Optical Electronics in Modern Communications (Oxford University, 1997).
  29. H. Rokhsari and K. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92, 253905 (2004). [CrossRef]
  30. W. Yoshiki and T. Tanabe, “Analysis of four-port system for bistable memory in silica toroid microcavity,” in The 2nd International Symposium on Photonics and Electronics Convergence (ISPEC2012) (ISPEC, 2012), paper C-4.
  31. C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999). [CrossRef]
  32. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theor. Tech. 55, 1209–1218 (2007). [CrossRef]
  33. T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett. 15, 106–108 (1979). [CrossRef]
  34. T. Kippenberg, S. Spillane, and K. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004). [CrossRef]
  35. A. Savchenkov, V. Ilchenko, A. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A 70, 051804 (2004). [CrossRef]
  36. S. Spillane, T. Kippenberg, O. Painter, and K. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef]
  37. M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef]
  38. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13, 801–820 (2005). [CrossRef]
  39. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/mpropagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011). [CrossRef]
  40. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited