OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 2 — Feb. 1, 2012
  • pp: A43–A54

Optical studies of ballistic currents in semiconductors [Invited]

Brian A. Ruzicka and Hui Zhao  »View Author Affiliations


JOSA B, Vol. 29, Issue 2, pp. A43-A54 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000A43


View Full Text Article

Enhanced HTML    Acrobat PDF (872 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a summary of recent studies of ballistic currents using nonlinear optical techniques. Quantum interference between one- and two-photon absorption pathways is used to inject and control ballistic currents in GaAs samples. With this, a pure charge current, pure spin current, or spin-polarized charge current can be injected by changing the polarization configuration of the two pump pulses. Such currents are temporally and spatially resolved using high-resolution pump–probe techniques, including a derivative-detection scheme, which allows detection of the motion of carriers as small as 0.1 nm. Observation of the intrinsic inverse spin Hall effect in the ballistic regime, a study of time-resolved ballistic spin-polarized charge currents, and a study of the efficiency of spin current injection by quantum interference were all achieved using these techniques. Additionally, we discuss demonstrations of second-order nonlinear optical effects induced by charge and spin currents, which allow for the nondestructive, noninvasive, and real-time imaging of currents.

© 2012 Optical Society of America

OCIS Codes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

History
Original Manuscript: October 17, 2011
Manuscript Accepted: November 23, 2011
Published: January 25, 2012

Virtual Issues
(2012) Advances in Optics and Photonics

Citation
Brian A. Ruzicka and Hui Zhao, "Optical studies of ballistic currents in semiconductors [Invited]," J. Opt. Soc. Am. B 29, A43-A54 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-2-A43


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2002).
  2. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1996).
  3. J. Hegarty, L. Goldner, and M. D. Sturge, “Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures,” Phys. Rev. B 30, 7346–7348 (1984). [CrossRef]
  4. K. Hattori, T. Mori, H. Okamoto, and Y. Hamakawa, “Carrier transport property in the amorphous silicon/amorphous silicon carbide multilayer studied by the transient grating technique,” Appl. Phys. Lett. 51, 1259–1261 (1987). [CrossRef]
  5. H. Schwab, K.-H. Pantke, J. M. Hvam, and C. Klingshirn, “Measurements of exciton diffusion by degenerate four-wave mixing in CdSSe,” Phys. Rev. B 46, 7528–7532 (1992). [CrossRef]
  6. J. Erland, B. S. Razbirin, K.-H. Pantke, V. G. Lyssenko, and J. M. Hvam, “Exciton diffusion in CdSe,” Phys. Rev. B 47, 3582–3587 (1993). [CrossRef]
  7. V. Mizeikis, V. G. Lyssenko, J. Erland, and J. M. Hvam, “Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe,” Phys. Rev. B 51, 16651–16659 (1995). [CrossRef]
  8. A. C. Schaefer, J. Erland, and D. G. Steel, “Nondiffusive excitonic transport in GaAs and the effects of momentum scattering,” Phys. Rev. B 54, R11046–R11049 (1996). [CrossRef]
  9. F. A. Majumder, H.-E. Swoboda, K. Kempf, and C. Klingshirn, “Electron-hole plasma expansion in the direct-band-gap semiconductors CdS and CdSe,” Phys. Rev. B 32, 2407–2418 (1985). [CrossRef]
  10. L. M. Smith, D. R. Wake, J. P. Wolfe, D. Levi, M. V. Klein, J. Klem, T. Henderson, and H. Morkoç, “Picosecond imaging of photoexcited carriers in quantum wells: anomalous lateral confinement at high densities,” Phys. Rev. B 38, 5788–5791 (1988). [CrossRef]
  11. L. M. Smith, J. S. Preston, J. P. Wolfe, D. R. Wake, J. Klem, T. Henderson, and H. Morkoç, “Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well,” Phys. Rev. B 39, 1862–1870 (1989). [CrossRef]
  12. H. W. Yoon, D. R. Wake, J. P. Wolfe, and H. Morkoç, “In-plane transport of photoexcited carriers in GaAs quantum wells,” Phys. Rev. B 46, 13461–13470 (1992). [CrossRef]
  13. M. Achermann, B. A. Nechay, F. Morier-Genoud, A. Schertel, U. Siegner, and U. Keller, “Direct experimental observation of different diffusive transport regimes in semiconductor nanostructures,” Phys. Rev. B 60, 2101–2105 (1999). [CrossRef]
  14. B. A. Nechay, U. Siegner, F. Morier-Genoud, A. Schertel, and U. Keller, “Femtosecond near-field optical spectroscopy of implantation patterned semiconductors,” Appl. Phys. Lett. 74, 61–64 (1999). [CrossRef]
  15. H. Zhao, “Temperature dependence of ambipolar diffusion in silicon on insulator,” Appl. Phys. Lett. 92, 112104 (2008). [CrossRef]
  16. H. Zhao, M. Mower, and G. Vignale, “Ambipolar spin diffusion and D’yakonov-Perel’ spin relaxation in GaAs quantum wells,” Phys. Rev. B 79, 115321 (2009). [CrossRef]
  17. B. A. Ruzicka, L. K. Werake, H. Zhao, S. Wang, and K. P. Loh, “Femtosecond pump-probe studies of reduced graphene oxide thin films,” Appl. Phys. Lett. 96, 173106 (2010). [CrossRef]
  18. B. A. Ruzicka, S. Wang, L. K. Werake, B. Weintrub, K. P. Loh, and H. Zhao, “Hot carrier diffusion in graphene,” Phys. Rev. B 82, 195414 (2010). [CrossRef]
  19. B. A. Ruzicka, L. K. Werake, H. Samassekou, and H. Zhao, “Ambipolar diffusion of photoexcited carriers in bulk GaAs,” Appl. Phys. Lett. 97, 262119 (2010). [CrossRef]
  20. N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, “Spatially resolved femtosecond pump-probe study of topological insulator Bi2Se3,” Phys. Rev. B 83, 235306 (2011). [CrossRef]
  21. L.-L. Chao, G. S. Gargill, E. Snoeks, T. Marshall, J. Petruzzello, and M. Pashley, “Diffusion lengths of excited carriers in CdZnSe quantum wells,” Appl. Phys. Lett. 74, 741–743 (1999). [CrossRef]
  22. F. P. Logue, D. T. Fewer, S. J. Hewlett, J. F. Heffernan, C. Jordan, P. Rees, J. F. Donegan, E. M. McCabe, J. Hegarty, S. Taniguchi, T. Hino, K. Nakano, and A. Ishibashi, “Optical measurement of the ambipolar diffusion length in a ZnCdSe-ZnSe single quantum well,” J. Appl. Phys. 81, 536–538 (1997). [CrossRef]
  23. A. Vertikov, I. Ozden, and A. Nurmikko, “Investigation of excess carrier diffusion in nitride semiconductors with near-field optical microscopy,” Appl. Phys. Lett. 74, 850–852 (1999). [CrossRef]
  24. V. Malyarchuk, J. W. Tomm, V. Talalaev, C. Lienau, F. Rinner, and M. Baeumler, “Nanoscopic measurements of surface recombination velocity and diffusion length in a semiconductor quantum well,” Appl. Phys. Lett. 81, 346–348 (2002). [CrossRef]
  25. H. Hillmer, A. Forchel, and C. W. Tu, “Enhancement of electron-hole pair mobilities in thin GaAs/AlGaAs quantum wells,” Phys. Rev. B 45, 1240–1245 (1992). [CrossRef]
  26. H. Akiyama, T. Matsusue, and H. Sakaki, “Carrier scattering and excitonic effects on electron-hole-pair diffusion in nondoped and p-type-modulation-doped GaAs/AlxGa1−xAs quantum-well structures,” Phys. Rev. B 49, 14523–14530 (1994). [CrossRef]
  27. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488–1495 (2001). [CrossRef]
  28. I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323–410 (2004). [CrossRef]
  29. S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett. 56, 665–667 (1990). [CrossRef]
  30. D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Appl. Phys. Lett. 73, 1580–1582(1998). [CrossRef]
  31. H. Sanada, I. Arata, Y. Ohno, Z. Chen, K. Kayanuma, Y. Oka, F. Matsukura, and H. Ohno, “Relaxation of photoinjected spins during drift transport in GaAs,” Appl. Phys. Lett. 81, 2788–2790 (2002). [CrossRef]
  32. T. Sogawa, H. Ando, and S. Ando, “Spin-transport dynamics of optically spin-polarized electrons in GaAs quantum wires,” Phys. Rev. B 61, 5535–5539 (2000). [CrossRef]
  33. T. Sogawa, P. V. Santos, S. K. Zhang, S. Eshlaghi, A. D. Wieck, and K. H. Ploog, “Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves,” Phys. Rev. Lett. 87, 276601 (2001). [CrossRef]
  34. J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, “Coherent spin transport through dynamic quantum dots,” Nat. Mater. 4, 585–588 (2005). [CrossRef]
  35. O. D. D. Couto, F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, “Anisotropic spin transport in (110) GaAs quantum wells,” Phys. Rev. Lett. 98, 036603 (2007). [CrossRef]
  36. J. M. Kikkawa and D. D. Awschalom, “Lateral drag of spin coherence in gallium arsenide,” Nature 397, 139–141 (1999). [CrossRef]
  37. I. Malajovich, J. J. Berry, N. Samarth, and D. D. Awschalom, “Persistent sourcing of coherent spins for multifunctional semiconductor spintronics,” Nature 411, 770–772(2001). [CrossRef]
  38. I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, “Coherent transfer of spin through a semiconductor heterointerface,” Phys. Rev. Lett. 84, 1015–1018 (2000). [CrossRef]
  39. S. A. Crooker and D. L. Smith, “Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields,” Phys. Rev. Lett. 94, 236601 (2005). [CrossRef]
  40. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the spin Hall effect in semiconductors,” Science 306, 1910–1913 (2004). [CrossRef]
  41. V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, “Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases,” Nat. Phys. 1, 31–35 (2005). [CrossRef]
  42. V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard, and D. D. Awschalom, “Generating spin currents in semiconductors with the spin Hall effect,” Phys. Rev. Lett. 97, 096605 (2006). [CrossRef]
  43. N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, “Current-induced polarization and the spin Hall effect at room temperature,” Phys. Rev. Lett. 97, 126603 (2006). [CrossRef]
  44. N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, “Time-resolved dynamics of the spin Hall effect,” Nat. Phys. 4, 843–846 (2008). [CrossRef]
  45. S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrom, and P. A. Crowell, “Imaging spin transport in lateral ferromagnet/semiconductor structures,” Science 309, 2191–2195 (2005). [CrossRef]
  46. C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens, and D. D. Awschalom, “Observation of spin Coulomb drag in a two-dimensional electron gas,” Nature 437, 1330–1333 (2005). [CrossRef]
  47. S. G. Carter, Z. Chen, and S. T. Cundiff, “Optical measurement and control of spin diffusion in n-doped GaAs quantum wells,” Phys. Rev. Lett. 97, 136602 (2006). [CrossRef]
  48. C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, J. Stephens, and D. D. Awschalom, “Nondiffusive spin dynamics in a two-dimensional electron gas,” Phys. Rev. Lett. 98, 076604(2007). [CrossRef]
  49. J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. Mack, and D. D. Awschalom, “Emergence of the persistent spin helix in semiconductor quantum wells,” Nature 458, 610–613 (2009). [CrossRef]
  50. E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “Phase-controlled currents in semiconductors,” Phys. Rev. Lett. 74, 3596–3599 (1995). [CrossRef]
  51. R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996). [CrossRef]
  52. A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, “Observation of coherently controlled photocurrent in unbiased, bulk GaAs,” Phys. Rev. Lett. 78, 306–309 (1997). [CrossRef]
  53. T. M. Fortier, P. A. Roos, D. J. Jones, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors,” Phys. Rev. Lett. 92, 147403 (2004). [CrossRef]
  54. P. A. Roos, X. Li, R. P. Smith, J. A. Pipis, T. M. Fortier, and S. T. Cundiff, “Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents,” Opt. Lett. 30, 735–737 (2005). [CrossRef]
  55. D. Cote, J. M. Fraser, M. DeCamp, P. H. Bucksbaum, and H. M. van Driel, “THz emission from coherently controlled photocurrents in GaAs,” Appl. Phys. Lett. 75, 3959–3961 (1999). [CrossRef]
  56. M. J. Stevens, A. Najmaie, R. D. R. Bhat, J. E. Sipe, H. M. van Driel, and A. L. Smirl, “Optical injection and coherent control of a ballistic charge current in GaAs/AlGaAs quantum wells,” J. Appl. Phys. 94, 4999–5004 (2003). [CrossRef]
  57. R. D. R. Bhat and J. E. Sipe, “Optically injected spin currents in semiconductors,” Phys. Rev. Lett. 85, 5432–5435 (2000). [CrossRef]
  58. M. J. Stevens, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, “Quantum interference control of ballistic pure spin currents in semiconductors,” Phys. Rev. Lett. 90, 136603 (2003). [CrossRef]
  59. J. Hübner, W. W. Rühle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Direct observation of optically injected spin-polarized currents in semiconductors,” Phys. Rev. Lett. 90, 216601 (2003). [CrossRef]
  60. H. Zhao, A. L. Smirl, and H. M. van Driel, “Temporally and spatially resolved ballistic pure spin transport,” Phys. Rev. B 75, 075305 (2007). [CrossRef]
  61. H. Zhao, E. J. Loren, H. M. van Driel, and A. L. Smirl, “Coherence control of Hall charge and spin currents,” Phys. Rev. Lett. 96, 246601 (2006). [CrossRef]
  62. H. Zhao, E. J. Loren, A. L. Smirl, and H. M. van Driel, “Dynamics of charge currents ballistically injected in GaAs by quantum interference,” J. Appl. Phys. 103, 053510 (2008). [CrossRef]
  63. B. A. Ruzicka, K. Higley, L. K. Werake, and H. Zhao, “All-optical generation and detection of subpicosecond ac spin-current pulses in GaAs,” Phys. Rev. B 78, 045314 (2008). [CrossRef]
  64. B. A. Ruzicka and H. Zhao, “Power dependence of pure spin current injection by quantum interference,” Phys. Rev. B 79, 155204 (2009). [CrossRef]
  65. L. K. Werake and H. Zhao, “Observation of second-harmonic generation induced by pure spin currents,” Nat. Phys. 6, 875–878(2010). [CrossRef]
  66. E. Loren, H. Zhao, and A. L. Smirl, “All-optical injection and detection of ballistic charge currents in germanium,” J. Appl. Phys. 108, 083111 (2010). [CrossRef]
  67. H. Zhao and A. L. Smirl, “Injection and detection of ballistic electrical currents in silicon,” Appl. Phys. Lett. 97, 212106 (2010). [CrossRef]
  68. L. K. Werake, B. A. Ruzicka, and H. Zhao, “Observation of intrinsic inverse spin Hall effect,” Phys. Rev. Lett. 106, 107205 (2011). [CrossRef]
  69. C. Sames, J. M. Menard, M. Betz, A. L. Smirl, and H. M. van Driel, “All-optical coherently controlled terahertz ac charge currents from excitons in semiconductors,” Phys. Rev. B 79, 045208 (2009). [CrossRef]
  70. M. Spasenović, M. Betz, L. Costa, and H. M. van Driel, “All-optical coherent control of electrical currents in centrosymmetric semiconductors,” Phys. Rev. B 77, 085201 (2008). [CrossRef]
  71. L. Costa, M. Betz, M. Spasenovic, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3, 632–635 (2007). [CrossRef]
  72. R. W. Newson, A. A. Green, M. C. Hersam, and H. M. van Driel, “Coherent injection and control of ballistic charge currents in single-walled carbon nanotubes and graphite,” Phys. Rev. B 83, 115421 (2011). [CrossRef]
  73. C. Aversa and J. E. Sipe, “Coherent current control in semiconductors: a susceptibility perspective,” IEEE J. Quantum Electron. 32, 1570–1573 (1996). [CrossRef]
  74. D. Cote and H. M. van Driel, “Quantum interference control of electrical currents in GaAs,” IEEE J. Quantum Electron. 34, 1144–1154 (1998). [CrossRef]
  75. P. Roos, Q. Quraishi, S. Cundiff, R. Bhat, and J. Sipe, “Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements,” Opt. Express 11, 2081–2090 (2003). [CrossRef]
  76. P. A. Roos, X. Li, J. A. Pipis, T. M. Fortier, S. T. Cundiff, R. D. R. Bhat, and J. E. Sipe, “Characterization of carrier-envelope phase-sensitive photocurrent injection in a semiconductor,” J. Opt. Soc. Am. B 22, 362–368 (2005). [CrossRef]
  77. R. W. Newson, J. M. Menard, C. Sames, M. Betz, and H. M. van Driel, “Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite,” Nano Lett. 8, 1586–1589 (2008). [CrossRef]
  78. D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, “Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference,” Nano Lett. 10, 1293–1296 (2010). [CrossRef]
  79. E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Möck, and G. R. Booker, “Self-assembled InSb quantum dots grown on GaSb: a photoluminescence, magnetoluminescence, and atomic force microscopy study,” Appl. Phys. Lett. 74, 2041–2043 (1999). [CrossRef]
  80. Y. Kerachian, P. A. Marsden, and H. M. van Driel, “Dynamics of charge current gratings generated in GaAs by ultrafast quantum interference control,” Phys. Rev. B 75, 125205 (2007). [CrossRef]
  81. Y. Kerachian, H. M. van Driel, and A. L. Smirl, “Superposition of electron-hole density gratings in GaAs generated by quantum control of charge densities and charge currents,” Phys. Rev. B 75, 125206 (2007). [CrossRef]
  82. D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Dynamics of optical injection of charge and spin currents in quantum wells,” Phys. Rev. B 69, 035335 (2004). [CrossRef]
  83. K. A. Pronin and A. D. Bandrauk, “Coherent control of electric currents in superlattices and molecular wires: effect of relaxation,” Phys. Rev. B 69, 195308 (2004). [CrossRef]
  84. H. T. Duc, T. Meier, and S. W. Koch, “Microscopic analysis of the coherent optical generation and the decay of charge and spin currents in semiconductor heterostructures,” Phys. Rev. Lett. 95, 086606 (2005). [CrossRef]
  85. D. H. Marti, M. A. Dupertuis, and B. Deveaud, “Optical injection of charge current in quantum wires: oscillations induced by excitonic effects,” Phys. Rev. B 72, 075357 (2005). [CrossRef]
  86. Y. Kerachian, P. Nemec, H. M. van Driel, and A. L. Smirl, “Pure spin current gratings in semiconductors generated by quantum interference,” J. Appl. Phys. 96, 430–434 (2004). [CrossRef]
  87. E. J. Loren, B. A. Ruzicka, L. K. Werake, H. Zhao, H. M. van Driel, and A. L. Smirl, “Optical injection and detection of ballistic pure spin currents in Ge,” Appl. Phys. Lett. 95, 092107 (2009). [CrossRef]
  88. F. J. Jedema, A. T. Filip, and B. J. van Wees, “Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve,” Nature 410, 345–348 (2001). [CrossRef]
  89. S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, “Experimental realization of a quantum spin pump,” Phys. Rev. Lett. 91, 258301 (2003). [CrossRef]
  90. S. D. Ganichev, V. V. Bel’kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, C. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, C. Gerl, D. Schuh, J. Stahl, J. D. Boeck, G. Borghs, and W. Prettl, “Zero-bias spin separation,” Nat. Phys. 2, 609–613 (2006). [CrossRef]
  91. T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices,” Nat. Mater. 7, 125–129 (2008). [CrossRef]
  92. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect,” Nature 455, 778–781 (2008). [CrossRef]
  93. T. Yang, T. Kimura, and Y. Otani, “Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching,” Nat. Phys. 4, 851–854 (2008). [CrossRef]
  94. S. M. Frolov, A. Venkatesan, W. Yu, J. A. Folk, and W. Wegscheider, “Electrical generation of pure spin currents in a two-dimensional electron gas,” Phys. Rev. Lett. 102, 116802 (2009). [CrossRef]
  95. M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91, 4382–4386 (2002). [CrossRef]
  96. M. I. D’yakonov and V. I. Perel, “Possibility of orienting electron spins with current,” JETP Lett. 13, 467–469 (1971).
  97. J. E. Hirsch, “Spin Hall effect,” Phys. Rev. Lett. 83, 1834–1837 (1999). [CrossRef]
  98. S. F. Zhang, “Spin Hall effect in the presence of spin diffusion,” Phys. Rev. Lett. 85, 393–396 (2000). [CrossRef]
  99. S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301, 1348–1351 (2003). [CrossRef]
  100. J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, “Universal intrinsic spin Hall effect,” Phys. Rev. Lett. 92, 126603 (2004). [CrossRef]
  101. E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, “Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling,” Phys. Rev. Lett. 93, 226602 (2004). [CrossRef]
  102. L. Sheng, D. N. Sheng, and C. S. Ting, “Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder,” Phys. Rev. Lett. 94, 016602 (2005). [CrossRef]
  103. C. L. Kane and E. J. Mele, “Quantum spin Hall effect in graphene,” Phys. Rev. Lett. 95, 226801 (2005). [CrossRef]
  104. S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, “Resonant spin Hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field,” Phys. Rev. Lett. 92, 256603 (2004). [CrossRef]
  105. S. Zhang and Z. Yang, “Intrinsic spin and orbital angular momentum Hall effect,” Phys. Rev. Lett. 94, 066602 (2005). [CrossRef]
  106. B. K. Nikolic, S. Souma, L. P. Zarbo, and J. Sinova, “Nonequilibrium spin Hall accumulation in ballistic semiconductor nanostructures,” Phys. Rev. Lett. 95, 046601 (2005). [CrossRef]
  107. B. A. Bernevig and S. C. Zhang, “Intrinsic spin Hall effect in the two-dimensional hole gas,” Phys. Rev. Lett. 95, 016801 (2005). [CrossRef]
  108. H. Engel, B. I. Halperin, and E. I. Rashba, “Theory of spin Hall conductivity in n-doped GaAs,” Phys. Rev. Lett. 95, 166605 (2005). [CrossRef]
  109. S. Murakami, N. Nagaosa, and S. C. Zhang, “Spin-Hall insulator,” Phys. Rev. Lett. 93, 156804 (2004). [CrossRef]
  110. J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev. Lett. 94, 047204 (2005). [CrossRef]
  111. E. S. Garlid, Q. O. Hu, M. K. Chan, C. J. Palmstrøm, and P. A. Crowell, “Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures,” Phys. Rev. Lett. 105, 156602 (2010). [CrossRef]
  112. S. O. Valenzuela and M. Tinkham, “Direct electronic measurement of the spin Hall effect,” Nature 442, 176–179 (2006). [CrossRef]
  113. T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin Hall effect,” Phys. Rev. Lett. 98, 156601 (2007). [CrossRef]
  114. J. Schliemann and D. Loss, “Dissipation effects in spin-Hall transport of electrons and holes,” Phys. Rev. B 69, 165315 (2004). [CrossRef]
  115. J. Inoue, G. E. W. Bauer, and L. W. Molenkamp, “Suppression of the persistent spin Hall current by defect scattering,” Phys. Rev. B 70, 041303 (2004). [CrossRef]
  116. E. Y. Sherman, A. Najmaie, H. M. van Driel, A. L. Smirl, and J. E. Sipe, “Ultrafast extrinsic spin-Hall currents,” Solid State Commun. 139, 439–446 (2006). [CrossRef]
  117. C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, “Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures,” Nat. Phys. 6, 448–454 (2010). [CrossRef]
  118. S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, “Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells,” Appl. Phys. Lett. 77, 3146–3148 (2000). [CrossRef]
  119. S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko, S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V. Beregulin, and W. Prettl, “Resonant inversion of the circular photogalvanic effect in n-doped quantum wells,” Phys. Rev. B 68, 035319 (2003). [CrossRef]
  120. H. Diehl, V. A. Shalygin, V. V. Bel’kov, C. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, C. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, “Spin photocurrents in (110)-grown quantum well structures,” New J. Phys. 9, 349 (2007). [CrossRef]
  121. S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, “Conversion of spin into directed electric current in quantum wells,” Phys. Rev. Lett. 86, 4358–4361 (2001). [CrossRef]
  122. C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, “Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells,” Appl. Phys. Lett. 91, 252102 (2007). [CrossRef]
  123. K. S. Cho, C. T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, “Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures,” Phys. Rev. B 75, 085327 (2007). [CrossRef]
  124. K. S. Cho, Y. F. Chen, Y. Q. Tang, and B. Shen, “Photogalvanic effects for interband absorption in AlGaN/GaN superlattices,” Appl. Phys. Lett. 90, 041909 (2007). [CrossRef]
  125. X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, “Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1−xN/GaN heterostructures under uniaxial strain,” Appl. Phys. Lett. 91, 071912 (2007). [CrossRef]
  126. Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, “Room-temperature spin-oriented photocurrent under near-infrared irradiation and comparison of optical means with Shubnikov de-Haas measurements in AlxGa1−xN/GaN heterostructures,” Appl. Phys. Lett. 91, 071920 (2007). [CrossRef]
  127. A. Najmaie, R. D. R. Bhat, and J. E. Sipe, “All-optical injection and control of spin and electrical currents in quantum wells,” Phys. Rev. B 68, 165348 (2003). [CrossRef]
  128. J. Wang, B. F. Zhu, and R. B. Liu, “Second-order nonlinear optical effects of spin currents,” Phys. Rev. Lett. 104, 256601 (2010). [CrossRef]
  129. P. C. D. Hobbs, Building Electro-Optical Systems, 2nd ed.(Wiley, 2009).
  130. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  131. J. B. Khurgin, “Current induced second harmonic generation in semiconductors,” Appl. Phys. Lett. 67, 1113–1115 (1995). [CrossRef]
  132. B. A. Ruzicka, L. K. Werake, G. W. Xu, J. B. Khurgin, E. Y. Sherman, J. Z. Wu, and H. Zhao, “Second-harmonic generation induced by electric currents in GaAs,” Phys. Rev. Lett. (to be published).
  133. E. Y. Sherman, R. M. Abrarov, and J. E. Sipe, “Mode coupling and evolution in broken-symmetry plasmas,” Phys. Rev. B 80, 161308 (2009). [CrossRef]
  134. C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967). [CrossRef]
  135. K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991). [CrossRef]
  136. J. Bloch, J. G. Mihaychuk, and H. M. van Driel, “Electron photoinjection from silicon to ultrathin SiO2 films via ambient oxygen,” Phys. Rev. Lett. 77, 920–923 (1996). [CrossRef]
  137. C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett. 77, 2331–2333 (2000). [CrossRef]
  138. J. Qi, M. S. Yeganeh, I. Koltover, A. G. Yodh, and W. M. Theis, “Depletion-electric-field-induced changes in second-harmonic generation from GaAs,” Phys. Rev. Lett. 71, 633–636(1993). [CrossRef]
  139. A. Devizis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas, “Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales,” Phys. Rev. Lett. 103, 027404 (2009). [CrossRef]
  140. O. Aktsipetrov, V. Bessonov, A. Fedyanin, and V. Val’dner, “DC-induced generation of the reflected second harmonic in silicon,” JETP Lett. 89, 58–62 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited