OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 305–311

Prediction of the transparency in the visible range of x-ray absorbing nanocomposites built upon the assembly of LaF 3 or LaPO 4 nanoparticles with poly(methyl methacrylate)

Fady El Haber, Xavier Rocquefelte, Christine Andraud, Bouhalouane Amrani, Stéphane Jobic, Olivier Chauvet, and Gérard Froyer  »View Author Affiliations

JOSA B, Vol. 29, Issue 3, pp. 305-311 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (782 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical multiscale approach combining density functional theory and four-flux calculations based on the radiative transfer theory is used to prospect the optical properties of nanocomposite materials composed of inorganic nanoparticles of lanthanum-containing compounds ( LaF 3 or LaPO 4 ) embedded in Poly(methyl methacrylate) (PMMA). This theoretical investigation shows that a potential route to produce lead-free x-ray shielding screens with high transparency in the visible range ( > 70 % of incident light) may consist in incorporating colorless LaF 3 or LaPO 4 spherical particles with a diameter lower than 6 nm in a PMMA panel from a minimum thickness of 3 mm with a volumetric fraction of at least 10%. In terms of x-ray attenuation, this would lead to lead equivalency of 0.1 mm (lead foil).

© 2012 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.4760) Materials : Optical properties

ToC Category:

Original Manuscript: August 25, 2011
Revised Manuscript: October 20, 2011
Manuscript Accepted: November 2, 2011
Published: February 13, 2012

Fady El Haber, Xavier Rocquefelte, Christine Andraud, Bouhalouane Amrani, Stéphane Jobic, Olivier Chauvet, and Gérard Froyer, "Prediction of the transparency in the visible range of x-ray absorbing nanocomposites built upon the assembly of LaF3 or LaPO4 nanoparticles with poly(methyl methacrylate)," J. Opt. Soc. Am. B 29, 305-311 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhou, Z. Wu, Z. Zhang, W. Liu, and H. Dang, “Synthesis and room temperature ionic conductivity of nano-LaF3 bulk material,” Wear 249, 333–337 (2001). [CrossRef]
  2. R. Dekker, V. Sudarsan, F. C. J. M. van Veggel, K. Wörhoff, and A. Driessen, Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE, 2004).
  3. J. W. Stouwdam and F. C. J. M. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3nanoparticles,” Nano Lett. 2, 733–737 (2002). [CrossRef]
  4. T. Grzyb and S. Lis, “Photoluminescent properties of LaF3:Eu3+ and GdF3:Eu3+ nanoparticles prepared by co-precipitation method,” J. Rare Earth 27, 588–592 (2009). [CrossRef]
  5. D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochim. Acta A 61, 2455–2459 (2005). [CrossRef]
  6. M. A. Lim, S. I. Seog, W. J. Chung, and S. I. Hong, “Near infrared luminescence properties of nanohybrid film prepared from LaPO4:Er3+/LaPO4 core/shell nanoparticles and silica-based resin,” Opt. Mater. 31, 201–205 (2008). [CrossRef]
  7. H.-K. Jung, J.-S. Oh, S.-I. Seok, and T.-H. Lee, “Preparation and luminescence properties of LaPO4:Er, Yb nanoparticles,” J. Lumin. 114, 307–313 (2005). [CrossRef]
  8. W. Yan, Q. Weiping, Z. Jisen, and C. Chunyan, “Role of organic molecules on upconversion luminescence of LaF3 nanoparticles,” Mater. Lett. 63, 1285–1288 (2009). [CrossRef]
  9. Y. Wei, F. Lu, X. Zhang, and D. Chen, “Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals,” Mater. Lett. 61, 1337–1340 (2007). [CrossRef]
  10. M.-Y. Xie, L. Yu, H. He, and X.-F. Yu, “Synthesis of highly fluorescent LaF3Ln3+/LaF3 core/shell nanocrystals by a surfactant-free aqueous solution route,” J. Solid State Chem. 182, 597–601 (2009). [CrossRef]
  11. F. El Haber and G. Froyer, “Transparent polymers embedding nanoparticles for x-rays attenuation,” J. Univ. Chem. Technol. Metall. 43, 283–290 (2008).
  12. The RoHS Regulation, Directive 2002/95/EC, http://www.rohs.eu .
  13. F. El Haber, “Contribution à l’obtention de verres organiques sans plomb atténuateurs des rayons X- Synthèse modification de surface et caractérisations de nanoparticules incorporables dans les polymères acryliques” Ph.D thesis (Université de Nantes, 2007).
  14. M. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2004).
  15. B. Maheu and G. Gouesbet, “Four-flux models to solve the scattering transfer equation: special cases,” Appl. Opt. 25, 1122–1128 (1986). [CrossRef]
  16. B. Maheu, J. N. Le Toulouzan, and G. Couesbet, “Four-flux models to solve the scattering transfer equation in terms of Lorenz–Mie parameters,” Appl. Opt. 23, 3353–3362 (1984). [CrossRef]
  17. J.-C. Auger, B. Stout, and J. Lafait, “Dependent light scattering in dense heterogeneous media,” Physica B 279, 21–24 (2000). [CrossRef]
  18. G. A. Niklasson, “Comparison between four flux theory and multiple scattering theory,” Appl. Opt. 26, 4034–4036 (1987). [CrossRef]
  19. W. D. Lynch, Interband Absorption-Mechanisms and Interpretations—Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  20. F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids, R. A. Ballinger, ed. (Pergamon, 1975).
  21. C. Ambrosch-Draxl and J. Sofo, “Linear optical properties of solids within the full-potential linearized augmented plane wave method,” Comput. Phys. Commun. 175, 1–14 (2006). [CrossRef]
  22. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave+LO Program for Calculating Crystal Properties (TUW, 2001).
  23. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996). [CrossRef]
  24. W. E. Vargas, “Generalized four-flux radiative transfer model,” Appl. Opt. 37, 2615–2623 (1998). [CrossRef]
  25. C. Rozé, T. Girasole, G. Gréhan, G. Gouesbet, and B. Maheu, “Average crossing parameter and forward scattering ratio values in four-flux model for multiple scattering media,” Opt. Commun. 194, 251–263 (2001). [CrossRef]
  26. K.-H. Park and S.-J. Oh, “Electron-spectroscopy study of rare-earth trihalides,” Phys. Rev. B 48, 14833–14842 (1993). [CrossRef]
  27. K. Held, V. I. Anisimov, V. Eyert, G. Keller, A. K. McMahan, I. A. Nekrasov, and D. Vollhardt, “LDA+DMFT investigations of transition metal oxides and f-electron materials,” Adv. Solid State Phys. 43, 267–286 (2003). [CrossRef]
  28. C. G. Olson, M. Piacentini, and D. W. Lynch,“Optical properties of single crystals of some rare-earth trifluorides, 5–34 eV,” Phys. Rev. B 18, 5740–5749 (1978). [CrossRef]
  29. E. Nakzawa and F. J. Shiga,“Vacuum ultraviolet luminescence-excitation spectra of RPO4:Eu3+ (R=Y, La, Gd and Lu),” J. Lumin. 15, 255–259 (1977). [CrossRef]
  30. K. C. Mishra, I. Osterloh, H. Anton, B. Hannebauer, P. C. Schmidt, and K. H. Johnson, “First principles investigation of host excitation of LaPO4, La2O3 and AlPO4,” J. Lumin. 72–74, 144–145 (1997). [CrossRef]
  31. P. Chindaudom and K. Vedam, “Determination of the optical constants of an inhomogeneous transparent LaF3 thin film on a transparent substrate by spectroscopic ellipsometry,” Opt. Lett. 17, 538–540 (1992). [CrossRef]
  32. C. M. Gramaccioli and T. V. Segalstad, “A uranium-and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy,” Am. Mineral. 63, 757–761 (1978).
  33. A. Da Silva, C. Andraud, E. Charron, B. Stout, and J. Lafait, “Multiple light scattering in multilayered media: theory, experiments,” Physica B 338, 74–78 (2003). [CrossRef]
  34. O. Zieman, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems (Springer, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited