OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 434–442

Experimental studies in generation of high-purity photon-pairs using cascaded χ(2) processes in a periodically poled LiNbO3 ridge-waveguide device

Shin Arahira, Naoto Namekata, Tadashi Kishimoto, and Shuichiro Inoue  »View Author Affiliations

JOSA B, Vol. 29, Issue 3, pp. 434-442 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report detailed experimental studies in a single wavelength-band system of correlated photon-pair generation in a 1.5 μm telecommunication wavelength-band using cascaded χ(2):χ(2) processes, second-harmonic generation, and the following spontaneous parametric down conversion (c-SHG/SPDC), in a periodically poled LiNbO3 (PPLN) ridge-waveguide device. By using a PPLN module with 600%/W of the SHG efficiency, we achieved a coincidence-to-accidental ratio (CAR) of 2380 at 1.8×104 of the mean number of the signal photon per pulse. Detailed investigation on the origin of uncorrelated noise photons was also discussed in this paper. We revealed that the noise photons mainly originated from spontaneous Raman scattering induced in pigtail optical fibers and also that the PPLN device itself had poor contribution to the noise photons. This feature of the c-SHG/SPDC process is promising for the realization of a noise-photon-free, high-purity quantum entangled photon-pair source.

© 2012 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(270.4180) Quantum optics : Multiphoton processes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 16, 2011
Manuscript Accepted: November 11, 2011
Published: February 23, 2012

Shin Arahira, Naoto Namekata, Tadashi Kishimoto, and Shuichiro Inoue, "Experimental studies in generation of high-purity photon-pairs using cascaded χ(2) processes in a periodically poled LiNbO3 ridge-waveguide device," J. Opt. Soc. Am. B 29, 434-442 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961). [CrossRef]
  2. S. E. Harris, M. K. Oshman, and R. L. Byer, “Observation of tunable parametric fluorescence,” Phys. Rev. Lett. 18, 732–734 (1967). [CrossRef]
  3. D. Magde and H. Mahr, “Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000 A,” Phys. Rev. Lett. 18, 905–907 (1967). [CrossRef]
  4. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970). [CrossRef]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  6. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999). [CrossRef]
  7. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39, 621–622 (2003). [CrossRef]
  8. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18, 155–160 (2002).
  9. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped short PPLN waveguide,” Opt. Express 16, 12460–12468 (2008). [CrossRef]
  10. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “A high-flux source of polarization-entangled photons from a periodically-poled KTP parametric downconverter,” Phys. Rev. A 69, 013807 (2004). [CrossRef]
  11. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573–3580 (2004). [CrossRef]
  12. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14, 983–985 (2002). [CrossRef]
  13. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004). [CrossRef]
  14. J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fiber-based entanglement generation in telecom band,” New J. Phys. 9, 289 (2007). [CrossRef]
  15. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 5721–5727 (2008). [CrossRef]
  16. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005). [CrossRef]
  17. H. Takesue and K. Inoue, “1.5 μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005). [CrossRef]
  18. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368–20373 (2008). [CrossRef]
  19. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008). [CrossRef]
  20. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009). [CrossRef]
  21. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express 15, 10288–10293 (2007). [CrossRef]
  22. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999). [CrossRef]
  23. B. Chen, C. Q. Xu, B. Zhou, and X. H. Tang, “Analysis of cascaded second-order nonlinear interaction based on quasi-phase-matched optical waveguides,” IEEE J. Quantum Electron. 8, 675–680 (2002). [CrossRef]
  24. K. Hirosawa, Y. Ito, H. Ushio, H. Nakagome, and F. Kannari, “Generation of squeezed vacuum pulses using cascaded second-order optical nonlinearity of periodically poled lithium niobate in a Sagnac interferometer,” Phys. Rev. A 80, 043832 (2009). [CrossRef]
  25. M. Hunault, H. Takesue, O. Tadanaga, Y. Noshida, and M. Asobe, “Generation of time-bin entangled photon pairs by cascaded second order nonlinearity in a single periodically poled LiNbO3 waveguide,” Opt. Lett. 35, 1239–1241 (2010). [CrossRef]
  26. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19, 16032–16043 (2011). [CrossRef]
  27. Y-K. Jiang and A. Tomita, “The generation of polarization-entangled photon pairs using periodically poled lithium niobate waveguides in a fibre loop,” J. Phys. B 40, 437–443 (2007). [CrossRef]
  28. T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett. 23, 161–163 (2011). [CrossRef]
  29. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550 nm using an InGaAs/InP avalanche photodiode operated with s sine wave gating,” Opt. Express 14, 10043–10049 (2006). [CrossRef]
  30. N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22, 529–531 (2010). [CrossRef]
  31. H. Takesue and K. Inoue, “Generation of 1.5 μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72, 041804(R) (2005). [CrossRef]
  32. B. Zhou, C. Q. Xu, and B. Chen, “Comparison of difference-frequency generation and cascaded χ(2) based wavelength conversions in LiNbO3 quasi-phase-matched waveguides,” J. Opt. Soc. Am. B 20, 846–852 (2003). [CrossRef]
  33. H. Tan, G. P. Banfi, and A. Tomaselli, “Optical frequency mixing through cascaded second-order processes in β-barium borate,” Appl. Phys. Lett. 63, 2472–2474 (1993). [CrossRef]
  34. R. F. Schaufele and M. J. Weber, “Raman scattering by lithium niobate,” Phys. Rev. 152, 705–708 (1966). [CrossRef]
  35. D. Sato, T. Morita, T. Suhara, and M. Fujimura, “Efficiency improvement by high-index cladding in LiNbO3 waveguide quasi-phase-matched wavelength converter for optical communication,” IEEE Photon. Technol. Lett. 15, 569–571 (2003). [CrossRef]
  36. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002). [CrossRef]
  37. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123–191125 (2006). [CrossRef]
  38. T. Umeki, O. Tadanaga, and M. Asobe, “High efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited