OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 3 — Mar. 1, 2012
  • pp: 502–512

Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability

Edmund J. R. Kelleher, John C. Travers, Sergei V. Popov, and James R. Taylor  »View Author Affiliations


JOSA B, Vol. 29, Issue 3, pp. 502-512 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000502


View Full Text Article

Enhanced HTML    Acrobat PDF (2494 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report in detail, both experimentally and using numerical simulation, the efficiency of generation of supercontinua in optical fiber driven by modulation instability of a continuous-wave (CW) pump source. It is shown that the degree of pump coherence has a dramatic effect on the resulting spectral expansion and it is discussed how this can be explained by having the proper conditions for efficient modulation instability to break the CW pump light into a train of fundamental solitons that subsequently undergo self-Raman shift to longer wavelengths. It is proposed that an optimal pump bandwidth exists corresponding to the optimal degree of pump incoherence, defined as a function of the modulation instability period.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3510) Lasers and laser optics : Lasers, fiber
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 22, 2011
Manuscript Accepted: January 9, 2012
Published: March 1, 2012

Virtual Issues
March 29, 2012 Spotlight on Optics

Citation
Edmund J. R. Kelleher, John C. Travers, Sergei V. Popov, and James R. Taylor, "Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability," J. Opt. Soc. Am. B 29, 502-512 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-3-502


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003). [CrossRef]
  2. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003). [CrossRef]
  3. M. González-Herráez, S. Martin-Lopez, P. Corredera, M. L. Hernanz, and P. R. Horche, “Supercontinuum generation using a continuous-wave Raman fiber laser,” Opt. Commun. 226, 323–328 (2003). [CrossRef]
  4. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, “Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm,” Appl. Phys. Lett. 85, 2706–2708 (2004). [CrossRef]
  5. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended CW supercontinuum generation in a low water-loss holey fiber,” Opt. Lett. 30, 3132–3134 (2005). [CrossRef]
  6. A. B. Rulkov, A. A. Ferin, J. C. Travers, S. V. Popov, and J. R. Taylor, “Broadband, low intensity noise CW source for OCT at 1800 nm,” Opt. Commun. 281, 154–156 (2008). [CrossRef]
  7. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008). [CrossRef]
  8. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008). [CrossRef]
  9. A. Kudlinski and A. Mussot, “Visible cw-pumped supercontinuum,” Opt. Lett. 33, 2407 (2008). [CrossRef]
  10. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” J. Lightwave Technol. 27, 1556–1564 (2009). [CrossRef]
  11. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009). [CrossRef]
  12. B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18, 24729–24734 (2010). [CrossRef]
  13. J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 8.
  14. A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16, 694–697 (1980). [CrossRef]
  15. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6, 1149–1158 (1989). [CrossRef]
  16. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Femtosecond soliton Raman generation,” IEEE J. Quantum Electron. 24, 332–340 (1988). [CrossRef]
  17. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24, 1729–1738 (2007). [CrossRef]
  18. S. K. Turitsyn, “Theory of energy evolution in laser resonators with saturated gain and non-saturated loss,” Opt. Express 17, 11898–11904 (2009). [CrossRef]
  19. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19, 8394–8405 (2011). [CrossRef]
  20. S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, L. Abrardi, M. L. Hernanz, and M. Gonzalez-Herraez, “Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation,” Opt. Lett. 31, 3477–3479 (2006). [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  22. J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17, 1502–1507 (2009). [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  24. E. M. Dianov, A. Grudinin, A. Prokhorov, and V. Serkin, “Non-linear transformation of laser radiation and generation of the Raman solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge University, 1992), Chap. 7.
  25. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). [CrossRef]
  26. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzlez-Herrez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005). [CrossRef]
  27. J. N. Kutz, C. Lynga, and B. J. Eggleton, “Enhanced supercontinuum generation through dispersion-management,” Opt. Express 13, 3989–3998 (2005). [CrossRef]
  28. M. Soljacic, M. Segev, T. Coskun, D. N. Christodoulides, and A. Vishwanath, “Modulation instability of incoherent beams in noninstantaneous nonlinear media,” Phys. Rev. Lett. 84, 467–470 (2000). [CrossRef]
  29. A. Sauter, S. Pitois, G. Millot, and A. Picozzi, “Incoherent modulation instability in instantaneous nonlinear Kerr media,” Opt. Lett. 30, 2143–2145 (2005). [CrossRef]
  30. J. C. Travers, “Optimizing pump partial coherence for efficient modulation instability and supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuX3.
  31. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  32. S. Kobtsev and S. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13, 6912–6918 (2005). [CrossRef]
  33. J. C. Travers, S. V. Popov, and J. R. Taylor, “A new model for CW supercontinuum generation,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMT3.
  34. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010). [CrossRef]
  35. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  36. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993). [CrossRef]
  37. I. A. Walmsley and V. Wong, “Characterization of the electric field of ultrashort optical pulses,” J. Opt. Soc. Am. B 13, 2453–2463 (1996). [CrossRef]
  38. J. C. Travers, M. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), Chap. 3.
  39. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  40. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002). [CrossRef]
  41. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  42. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002). [CrossRef]
  43. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett. 12, 628–630 (1987). [CrossRef]
  44. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995). [CrossRef]
  45. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited