OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 543–552

Thermal effects in semiconductor saturable-absorber mirrors

Stephanie L. Schieffer, Joel A. Berger, Benjamin L. Rickman, V. P. Nayyar, and W. Andreas Schroeder  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 543-552 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A semianalytical evaluation of laser-beam-induced thermal deformation of III–V semiconductor-based saturable Bragg reflectors is presented. The thermally induced bowing and resulting optical aberrations for different incident laser spot sizes and saturable Bragg reflector dimensions are calculated. Also discussed are the effects of the major physical and optical SESAM and laser parameters.

© 2012 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(230.0230) Optical devices : Optical devices
(230.1480) Optical devices : Bragg reflectors
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

Original Manuscript: September 9, 2011
Revised Manuscript: November 16, 2011
Manuscript Accepted: November 26, 2011
Published: March 5, 2012

Stephanie L. Schieffer, Joel A. Berger, Benjamin L. Rickman, V. P. Nayyar, and W. Andreas Schroeder, "Thermal effects in semiconductor saturable-absorber mirrors," J. Opt. Soc. Am. B 29, 543-552 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28, 367–369 (2003). [CrossRef]
  2. D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davis, and S. W. Bland, “High-average-power (>20  W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17, 919–926 (2000). [CrossRef]
  3. Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, “Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector,” Opt. Lett. 26, 199–201 (2001). [CrossRef]
  4. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of output power,” Opt. Lett. 35, 2302–2304 (2010). [CrossRef]
  5. D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.
  6. G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000). [CrossRef]
  7. J.-L. He, C.-K. Lee, J. Y. J. Huang, S.-C. Wang, C.-L. Pan, and K.-F. Huang, “Diode-pumped passively mode-locked multiwatt Nd:GdVO4 laser with a saturable Bragg reflector,” Appl. Opt. 42, 5496–5499 (2003). [CrossRef]
  8. J. A. Berger, M. J. Greco, and W. A. Schroeder, “High-power femtosecond, thermal-lens-shaped Yb:KGW oscillator,” Opt. Express 16, 8629–8640 (2008). [CrossRef]
  9. L. F. Mollenauer and R. H. Stohlen, “Soliton laser,” Opt. Lett. 9, 13–15 (1984). [CrossRef]
  10. F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett. 12, 407–409 (1987). [CrossRef]
  11. L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995). [CrossRef]
  12. S. R. Henion and P. A. Schultz, “Yb:YAG laser: mode-locking and high-power operation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1992), paper CThQ2.
  13. P. Wang, S.-H. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995). [CrossRef]
  14. U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [CrossRef]
  15. M. Ramaswamy-Paye and J. G. Fujimoto, “Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,” Opt. Lett. 19, 1756–1758 (1994). [CrossRef]
  16. D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996). [CrossRef]
  17. D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996). [CrossRef]
  18. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996). [CrossRef]
  19. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001). [CrossRef]
  20. S. L. Schieffer, D. Brajkovic, A. I. Cornea, and W. A. Schroeder, “Low-threshold, dual-passive mode locking of a large mode area Nd:GdVO4 laser,” Opt. Express 14, 6694–6704 (2006). [CrossRef]
  21. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009). [CrossRef]
  22. P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997). [CrossRef]
  23. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, and H. Takahashi, “Broadband semiconductor saturable-absorber mirror for a self-starting mode-locked Cr:forsterite laser,” Opt. Lett. 23, 1465–1467 (1998). [CrossRef]
  24. B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, R. Pathak, and K. Bergman, “Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laser pumped with a diode-pumped Nd:YVO4 laser,” Opt. Lett. 21, 1171–1173 (1996). [CrossRef]
  25. Z. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, “Self-starting mode-locked Cr4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror,” Opt. Lett. 24, 1768–1770 (1999). [CrossRef]
  26. M. Rusu, R. Herda, and O. G. Okhotnikov, “Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity,” Opt. Lett. 29, 2246–2248 (2004). [CrossRef]
  27. M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.
  28. D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett. 35, 1446–1448 (2010). [CrossRef]
  29. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992). [CrossRef]
  30. U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser using intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993). [CrossRef]
  31. U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994). [CrossRef]
  32. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of anti-resonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995). [CrossRef]
  33. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995). [CrossRef]
  34. BATOP GmbH, Wildenbruchstrasse 15, 07745 Jena, Germany, info@Batop.de .
  35. Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985). [CrossRef]
  36. J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001). [CrossRef]
  37. H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000). [CrossRef]
  38. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004). [CrossRef]
  39. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).
  40. Y. Peng, Z. Cheng, T. Zhang, and J. Qui, “Temperature distributions and thermal deformations of mirror substrates in laser resonators,” Appl. Opt. 40, 4824–4830 (2001). [CrossRef]
  41. J. Fang and S. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998). [CrossRef]
  42. Y. Peng, Z. Cheng, Y. Zhang, and J. Qiu, “Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm,” Opt. Eng. 40, 2822–2829 (2001). [CrossRef]
  43. H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989). [CrossRef]
  44. F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998). [CrossRef]
  45. E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999). [CrossRef]
  46. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999). [CrossRef]
  47. X. Y. Yu, G. Chen, A. Verma, and J. S. Smith, “Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure,” Appl. Phys. Lett. 67, 3554–3556(1995). [CrossRef]
  48. S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221–224 (2004). [CrossRef]
  49. engineeringtoolbox.com .
  50. K. V. Volodchenko, M. S. Hurdoglyan, C.-M. Kim, and G. U. Kim, “Observation and investigation of off-axis modes in a high-power Nd:YAG laser,” Appl. Opt. 43, 4768–4773(2004). [CrossRef]
  51. A. E. Siegman, “Analysis of laser beam quality degradation cause by quartic phase aberrations,” Appl. Opt. 32, 5893–5901 (1993). [CrossRef]
  52. S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085(1999). [CrossRef]
  53. A. Sadao, “GaAs, AlAs, and AlxGax−1As: material parameters or use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985). [CrossRef]
  54. M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994). [CrossRef]
  55. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985). [CrossRef]
  56. V. P. Nayyar and N. K. Verma, “Two-point resolution of Gaussian apertures operating in partially coherent light using various resolution criteria,” Appl. Opt. 17, 2176–2180 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited