OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 719–728

Quantum treatment of atom–field interaction via the quadratic invariant

M. Sebawe Abdalla, H. Eleuch, and J. Peřina  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 719-728 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000719


View Full Text Article

Enhanced HTML    Acrobat PDF (529 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new quantum treatment for the problem of the interaction between a two-level atom and field, which is expressed by the Jaynes–Cummings model. The treatment is built up on the construction of a quadratic invariant for the free-field Hamiltonian and used to reformulate the interaction term. We concentrate our study on atomic inversion as well as the phenomenon of squeezing. For the atomic inversion there is a delay during the revival period beside a period of partial collapse. The phenomenon of squeezing is also observed in the normal, the variance, and the entropy squeezing. However, the maximum value of the squeezing beside its period depends in general on the variation of the field frequency ω as well as the μ-parameter, both of which play a crucial role to control this phenomenon.

© 2012 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 30, 2011
Revised Manuscript: December 6, 2011
Manuscript Accepted: December 14, 2011
Published: March 20, 2012

Citation
M. Sebawe Abdalla, H. Eleuch, and J. Peřina, "Quantum treatment of atom–field interaction via the quadratic invariant," J. Opt. Soc. Am. B 29, 719-728 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-719


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963). [CrossRef]
  2. H. I. Yoo and J. H. Eberly, “Dynamical theory of an atom with two or three levels interacting with quantized cavity fields,” Phys. Rep. 118, 239–337 (1985). [CrossRef]
  3. B. W. Shore and P. L. Knight, “The Jaynes–Cummings model,” J. Mod. Opt. 40, 1195–1238 (1993). [CrossRef]
  4. H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006). [CrossRef]
  5. M. S. Abdalla, M. M. A. Ahmed, and A.-S. F. Obada, “Dynamics of a nonlinear Jaynes–Cummings model,” Physica A 162, 215–240 (1990). [CrossRef]
  6. M. S. Abdalla, M. M. A. Ahmed, and A.-S. F. Obada, “Multimode and multiphoton processes in a nonlinear Jaynes–Cummings model,” Physica A 170, 393–414 (1991). [CrossRef]
  7. M. Abdel-Aty, M. S. Abdalla, and A.-S. F. Obada, “Entropy squeezing of a two-mode multiphoton Jaynes–Cummings model in the presence of in a nonlinear medium,” J. Opt. B 4, 134–142 (2002). [CrossRef]
  8. H. Eleuch and R. Bennaceur, “Nonlinear dissipation and the quantum noise of light in semiconductor microcavities,” J. Opt. B 6, 189–195 (2004). [CrossRef]
  9. H. Eleuch, “Autocorrelation function of microcavity-emitting field in the linear regime,” Eur. Phys. J. D 48, 139–143 (2008). [CrossRef]
  10. H. Elech, Y. V. Rostovtsev, and M. S. Abdalla, “Autocorrelation function for a two-level atom with counter-rotating terms,” J. Russ. Laser Res. 32, 269–276 (2011). [CrossRef]
  11. M. S. Abdalla, E. M. Khalil, and A. S.-F. Obada, “Exact treatment of the Jaynes-Cummings model under the action of external classical field,” Ann. Phys. 326, 2486–2498 (2011). [CrossRef]
  12. H. Eleuch, “Noise spectra of microcavity-emitting field in the linear regime,” Eur. Phys. J. D 49, 391–395 (2008). [CrossRef]
  13. M. S. Abdalla, J. Křepelka, and J. Peřina, “Effect of Kerr-like medium on a two-level atom in interaction with bimodal oscillators,” J. Phys. B 39, 1563–1577 (2006). [CrossRef]
  14. M. Abdel-Aty, M. S. Abdalla, and A.-S. F. Obada, “Quantum information and entropy squeezing of a two-level atom with a nonlinear medium,” J. Phys. A: Math. Gen. 34, 9129–9141 (2001). [CrossRef]
  15. H. Eleuch, “Photon statistics of light in semiconductor microcavities,” J. Phys. B 41, 055502 (2008). [CrossRef]
  16. M. Abdel-Aty, M. S. Abdalla, and A. S.-F. Obada, “Uncertainty relation and information entropy of a time dependent bimodel two-level system,” J. Phys. B 35, 4773–4786 (2002). [CrossRef]
  17. M. S. Abdalla, M. Abdel-Aty, and A. S.-F. Obada, “Entropy and entanglement of time-dependent Jaynes–Cummings model,” Physica A 326, 203–219 (2003). [CrossRef]
  18. A. S.-F. Obada, M. Abdel-Aty, and M. S. Abdalla, “Quantum treatment of a time-dependent single trapped ion interacting with a bimodal cavity field,” Int. J. Mod. Phys. B 17, 5925–5941 (2003). [CrossRef]
  19. Y. V. Rostovtsev, H. Eleuch, A. Svidzinsky, H. Li, V. Sautenkov, and M. O. Scully, “Excitation of atomic coherence using off-resonant strong laser pulses,” Phys. Rev. A 79, 063833 (2009). [CrossRef]
  20. P. K. Jha, H. Eleuch, and Y. V. Rostovtsev, “Coherent control of atomic excitation using off-resonant strong few-cycle pulses,” Phys. Rev. A 82, 045805 (2010). [CrossRef]
  21. M. S. Abdalla and A. I. El-kasapy, “Lie algebraic approach of a charged particle in presence of a constant magnetic field via the quadratic invariant,” Ann. Phys. 325, 1667–1678 (2010). [CrossRef]
  22. J.-Q. Shen and H.-Y. Zhu, “Exact solutions to the time-dependent supersymmetric Jaynes-Cummings model and the Chiao-Wu model,” Ann. Phys. 12, 131–145 (2003). [CrossRef]
  23. Q. Xian-Ming, Y. Zhao-Xian, J. Zhi-Yong, and X. Bing-Hao, “Geometric phase in a time-dependent Λ-type Jaynes–Cummings model,” Commun. Theor. Phys. 51, 407–410 (2009). [CrossRef]
  24. J.-Q. Shen, H.-Y. Zhu, and P. Chen, “Exact solutions and geometric phase factor of time-dependent three-generator quantum systems,” Eur. Phys. J. D 23, 305–313 (2003). [CrossRef]
  25. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458–1474 (1969). [CrossRef]
  26. H. R. Lewis, “Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians,” Phys. Rev. Lett. 18, 510–512 (1967). [CrossRef]
  27. V. Ermakov, “Second order differential equations. Conditions of complete integrability,” Universita Izvestia Kiev Series III 9, 1–25 (1880) (translated from Russian by A. O. Harin).
  28. H. R. Lewis, “Class of exact invariants for classical and quantum time-dependent harmonic oscillators,” J. Math. Phys. 9, 1976–1987 (1968). [CrossRef]
  29. M. S. Abdalla and J.-R. Choi, “Propagator for the time-dependent charged oscillator via linear and quadratic invariants,” Ann. Phys. 322, 2795–2810 (2007). [CrossRef]
  30. M. S. Abdalla and M. M. Nassar, “Quantum treatment of the time-dependent coupled oscillators under the action of random driving force,” Ann. Phys. 324, 637–669 (2009). [CrossRef]
  31. M. S. Abdalla and N. Al-Ismael, “An alternative model of the damped harmonic oscillator under the influence of external force,” Int. J. Theor. Phys. 48, 2757–2776 (2009). [CrossRef]
  32. M. S. Abdalla and L. Al-Rageb, “Nonclassical properties of the time-dependent harmonic oscillator under the action of external force,” Appl. Math. Inf. 5, 570–588 (2011).
  33. R. K. Colegrave and M. S. Abdalla, “Invariants for the time-dependent harmonic oscillator. I.,” J. Phys. A: Math. Gen. 16, 3805–3815 (1983). [CrossRef]
  34. R. K. Colegrave, M. S. Abdalla, and M. A. Mannan, “Invariants for the time-dependent harmonic oscillator. II. Cubic and quartic invariants,” J. Phys. A: Math. Gen. 17, 1567–1571 (1984). [CrossRef]
  35. M. S. Abdalla and P. G. L. Leach, “Lie algebraic treatment of the quadratic invariants for the degenerate parametric amplifier,” Theor. Math. Phys. 159, 535–550 (2009). [CrossRef]
  36. M. S. Abdalla and P. G. L. Leach, “Linear and quadratic invariants for the transformed Tavis-Cummings model,” J. Phys. A: Math. Gen. 36, 12205–12221 (2003). [CrossRef]
  37. M. S. Abdalla and P. G. L. Leach, “Wigner function for time dependent coupled linear oscillators via linear and quadratic invariant processes,” J. Phys. A: Math. Gen. 38, 881–893 (2005). [CrossRef]
  38. M. S. Abdalla and P. G. L. Leach, “Lie algebraic approach and quantum treatment of an anisotropic charged particle via the quadratic invariant,” J. Math. Phys. 52, 083504 (2011). [CrossRef]
  39. E. Pinney, “The nonlinear differential equation y′′+p(x)y+cy-3=0,” Proc. Am. Math. Soc. 1, 681 (1950).
  40. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley1974).
  41. E. Majernikova, V. Majernik, and S. Shpyrko, “Entropic uncertainty measure for fluctuations in two-level electron-phonon models,” Eur. Phys. J. B 38, 25–35 (2004). [CrossRef]
  42. X.-P. Liao and M. F. Fang, “Entropy squeezing for a two-level atom in motion interacting with a quantized field,” Physica A 332, 176–184 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited