OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 806–812

Spatiotemporal phase-matching in capillary high-harmonic generation

Edward T. F. Rogers, Sarah L. Stebbings, Ana M. de Paula, Christopher A. Froud, Matthew Praeger, Benjamin Mills, James Grant-Jacob, William S. Brocklesby, and Jeremy G. Frey  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 806-812 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple phase-matching model that takes into account the full spatiotemporal nature of capillary high-harmonic generation. Spectra predicted from the model are compared to experimental results for a number of gases and are shown to reproduce the spectral envelope of experimentally generated harmonics. The model demonstrates that an ionization-induced phase mismatch is limiting the energy of the generated harmonics in current capillary high-harmonic generation experiments. The success of this model shows that phase-matching processes play a dominant role in determining the emission from capillary high-harmonic generation.

© 2012 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(020.2649) Atomic and molecular physics : Strong field laser physics
(260.6048) Physical optics : Soft x-rays

ToC Category:
Atomic and Molecular Physics

Original Manuscript: July 11, 2011
Revised Manuscript: November 25, 2011
Manuscript Accepted: January 26, 2012
Published: March 30, 2012

Edward T. F. Rogers, Sarah L. Stebbings, Ana M. de Paula, Christopher A. Froud, Matthew Praeger, Benjamin Mills, James Grant-Jacob, William S. Brocklesby, and Jeremy G. Frey, "Spatiotemporal phase-matching in capillary high-harmonic generation," J. Opt. Soc. Am. B 29, 806-812 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Macklin, J. D. Kmetec, and C. L. Gordon, “High-order harmonic generation using intense femtosecond pulses,” Phys. Rev. Lett. 70, 766–769 (1993). [CrossRef]
  2. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, S. Backus, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “High-order harmonic generation up to 250 ev from highly ionized argon,” Phys. Rev. Lett. 92, 033001 (2004). [CrossRef]
  3. G. A. Reider, “Xuv attosecond pulses: generation and measurement,” J. Phys. D 37, R37–R48 (2004). [CrossRef]
  4. M. Bellini, C. Lynga, A. Tozzi, M. B. Gaarde, T. W. Hansch, A. L’Huillier, and C. G. Wahlstrom, “Temporal coherence of ultrashort high-order harmonic pulses,” Phys. Rev. Lett. 81, 297–300 (1998). [CrossRef]
  5. R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P. Christov, Y. W. Liu, D. Attwood, and C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376–378 (2002).
  6. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001). [CrossRef]
  7. A. L’Huillier, P. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064 nm,” Phys. Rev. A 46, 2778–2790 (1992). [CrossRef]
  8. M. Lewenstein, P. Salières, and A. L’Huillier, “Phase of the atomic polarization in high-order harmonic-generation,” Phys. Rev. A 52, 4747–4754 (1995). [CrossRef]
  9. P. Salieres, A. L’Huillier, and M. Lewenstein, “Coherence control of high-order harmonics,” Phys. Rev. Lett. 74, 3776–3779 (1995). [CrossRef]
  10. F. Lindner, W. Stremme, M. G. Schatzel, F. Grasbon, G. G. Paulus, H. Walther, R. Hartmann, and L. Struder, “High-order harmonic generation at a repetition rate of 100 khz,” Phys. Rev. A 68, 013814 (2003).
  11. C. Altucci, R. Bruzzese, C. de Lisio, M. Nisoli, E. Priori, S. Stagira, M. Pascolini, L. Poletto, P. Villoresi, V. Tosa, and K. Midorikawa, “Phase-matching analysis of high-order harmonics generated by truncated bessel beams in the sub-10-fs regime,” Phys. Rev. A 68, 033806 (2003). [CrossRef]
  12. C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett. 83, 2187–2190 (1999). [CrossRef]
  13. A. Naumov, A. Zheltikov, A. Fedotov, D. Sidorov-Biryukov, A. Tarasevitch, P. Zhou, and D. von der Linde, “Pressure control of phase matching in high-order harmonic generation in hollow fibers filled with an absorbing weakly ionizing gas,” J. Opt. Soc. Am. B 18, 811–817 (2001). [CrossRef]
  14. A. Naumov, A. Zheltikov, A. Fedotov, D. Sidorov-Biryukov, A. Tarasevitch, P. Zhou, and D. Von der Linde, “Ionization and absorption effects in high-order harmonic generation in gas-filled hollow fibers,” Laser Part. Beams 19, 75–79 (2001). [CrossRef]
  15. I. P. Christov, H. C. Kapteyn, and M. M. Murnane, “Quasi-phase matching of high-harmonics and attosecond pulses in modulated waveguides,” Opt. Express 7, 362–367 (2000). [CrossRef]
  16. I. P. Christov, “Control of high harmonic and attosecond pulse generation in aperiodic modulated waveguides,” J. Opt. Soc. Am. B 18, 1877–1881 (2001). [CrossRef]
  17. T. Popmintchev, M.-C. Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M. M. Murnane, and H. C. Kapteyn, “Extended phase matching of high harmonics driven by mid-infrared light,” Opt. Lett. 33, 2128–2130 (2008). [CrossRef]
  18. M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).
  19. V.-M. Gkortsas, S. Bhardwaj, E. L. Falcão-Filho, K.-H. Hong, A. Gordon, and F. X. Kärtner, “Scaling of high harmonic generation conversion efficiency,” J. Phys. B 44, 045601 (2011). [CrossRef]
  20. I. Thomann, A. Bahabad, X. Liu, R. Trebino, M. M. Murnane, and H. C. Kapteyn, “Characterizing isolated attosecond pulses from hollow-core waveguidesusing multi-cycle driving pulses,” Opt. Express 17, 4611–4633 (2009). [CrossRef]
  21. M. J. Abel, T. Pfeifer, P. M. Nagel, W. Boutu, M. J. Bell, C. P. Steiner, D. M. Neumark, and S. R. Leone, “Isolated attosecond pulses from ionization gating of high-harmonic emission,” Chem. Phys. 366, 9–14 (2009). [CrossRef]
  22. A. S. Sandhu, E. Gagnon, A. Paul, I. Thomann, A. Lytle, T. Keep, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Generation of sub-optical-cycle, carrier-envelope-phase-insensitive, extreme-UV pulses via nonlinear stabilization in a waveguide,” Phys. Rev. A 74, 061803 (2006). [CrossRef]
  23. V. S. Popov, “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (keldysh theory),” Phys. Uspekhi 47, 855–885 (2004). [CrossRef]
  24. J. L. Krause, K. J. Schaffer, and K. C. Kulander, “Calculation of photoemission from atoms subject to intense laser fields,” Phys. Rev. A 45, 4998–-5010 (1992). [CrossRef]
  25. A. Gordon and F. X. Kärtner, “Quantitative modeling of single atom high harmonic generation,” Phys. Rev. Lett. 95, 223901 (2005). [CrossRef]
  26. E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. Le Blanc, F. Salin, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: Model and experiment,” Phys. Rev. Lett. 82, 1668–1671 (1999). [CrossRef]
  27. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  28. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, G. Tempea, C. Spielmann, and F. Krausz, “Toward a terawatt-scale sub-10-fs laser technology,” IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998). [CrossRef]
  29. S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8, 858–867 (1991). [CrossRef]
  30. B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, 2nd ed. (Prentice Hall, 2003).
  31. R. Nubling and J. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
  32. A. L’Huillier, M. Lewenstein, P. Salières, P. Balcou, M. Y. Ivanov, J. Larsson, and C. G. Wahlström, “High-order harmonic-generation cutoff,” Phys. Rev. A 48, R3433–R3436 (1993). [CrossRef]
  33. J. Krause, K. Schafer, and K. Kulander, “High-order harmonic-generation from atoms and ions in the high-intensity regime,” Phys. Rev. Lett. 68, 3535–3538 (1992). [CrossRef]
  34. R. T. Chapman, T. J. Butcher, P. Horak, F. Poletti, J. G. Frey, and W. S. Brocklesby, “Modal effects on pump-pulse propagation in an Ar-filled capillary,” Opt. Express 18, 13279–13284 (2010).
  35. C. A. Froud, E. T. F. Rogers, D. C. Hanna, W. S. Brocklesby, M. Praeger, A. M. de Paula, J. J. Baumberg, and J. G. Frey, “Soft-x-ray wavelength shift induced by ionization effects in a capillary,” Opt. Lett. 31, 374–376 (2006). [CrossRef]
  36. A. Babin, D. Kartashov, A. Kiselev, V. Lozhkarev, A. Stepanov, and A. Sergeev, “Ionization spectrum broadening and frequency blue-shift of high-intensity femtosecond laser pulses in gas-filled capillary tubes,” Appl. Phys. B 75, 509–514 (2002). [CrossRef]
  37. C. Courtois, A. Couairon, B. Cors, J. Marqués, and G. Mattieussent, “Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: Simulations and experiments,” Phys. Plasmas 8, 3445–3456 (2001). [CrossRef]
  38. C. Chantler, K. Olsen, R. Dragoset, J. Chang, A. Kishore, S. Kotochigova, and D. Zucker, “X-ray form factor, attenuation and scattering tables (version 2.1),” [Online] Available: http://physics.nist.gov/ffast [July 16, 2008] (2005). Originally published as [39, 40].
  39. C. T. Chantler, “Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft x-ray (z=30–36, z=60–89, e=0.1  kev–10  kev), addressing convergence issues of earlier work,” Phys. Chem. Ref. Data 29, 597–1048 (2000). [CrossRef]
  40. C. T. Chantler, “Theoretical form-factor, attenuation and scattering tabulation for z=1–92 from e=1–10  ev to e=0.4–1.0  mev,” Phys. Chem. Ref. Data 24, 71–591 (1995). [CrossRef]
  41. M. Born, and E. Wolf, Principles of Optics (Pergamon, 1965), 3rd ed.
  42. O. K. Ersoy, Diffraction, Fourier Optics and Imaging (Wiley, 2007).
  43. A. E. Siegman, G. Nemes, and J. Serna, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, M. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), p. MQ1.
  44. S. L. Stebbings, E. T. F. Rogers, A. M. de Paula, M. Praeger, C. A. Froud, B. Mills, D. C. Hanna, J. J. Baumberg, W. S. Brocklesby, and J. G. Frey, “Molecular variation of capillary-produced soft x-ray high harmonics,” J. Phys B 41, 145602 (2008). [CrossRef]
  45. A. Dalgarno and A. E. Kingston, “The refractive indices and verdet constants of the inert gases,” Proc. R. Soc. Lond. Ser. A 259, 424–431 (1960). [CrossRef]
  46. E. R. Peck and B. N. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56, 1059–1063 (1966). [CrossRef]
  47. C. Cuthbertson and M. Cuthbertson, “On the refraction and dispersion of the halogens, halogen acids, ozone, steam, oxides of nitrogen and ammonia,” Philos. Trans. R. Soc. Lond. A 213, 1–26 (1914). [CrossRef]
  48. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low frequency laser fields,” Phys. Rev. A 49, 2117–2132(1994). [CrossRef]
  49. A single run can be completed in a few seconds on a standard desktop computer.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited