OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 4 — Apr. 1, 2012
  • pp: 847–854

Detailed theoretical investigation on improved quasi-lossless transmission using third-order Raman amplification based on ultralong fiber lasers

Xin-Hong Jia, Yun-Jiang Rao, Zi-Nan Wang, Wei-Li Zhang, Zeng-Ling Ran, Kun Deng, and Zi-Xin Yang  »View Author Affiliations


JOSA B, Vol. 29, Issue 4, pp. 847-854 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000847


View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An alternative structure using third-order Raman amplification based on ultralong fiber lasers (UL-FLs) is investigated numerically to further improve the quasi-lossless transmission performance. The performance comparisons on flatness of signal distribution, optical signal–noise ratio (OSNR), and noise figure (NF) among first-order, second-order, and third-order Raman pumping based on UL-FLs are discussed numerically. The results display that the gain distribution is pushed more uniformly along UL-FLs using third-order Raman pumping, which is very useful to further extend the quasi-lossless midspan distance. For transparency transmission, enhanced quasi-lossless transmission could be achieved without sacrifice to OSNR and NF. We also analyze the transmission dynamics of loss-managed fundamental solitons for different pumping configurations. The amplifier span and transmission quality are improved considerably, even for lower dispersion lengths, by employing the proposed scheme.

© 2012 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 15, 2011
Revised Manuscript: December 17, 2011
Manuscript Accepted: December 27, 2011
Published: March 30, 2012

Citation
Xin-Hong Jia, Yun-Jiang Rao, Zi-Nan Wang, Wei-Li Zhang, Zeng-Ling Ran, Kun Deng, and Zi-Xin Yang, "Detailed theoretical investigation on improved quasi-lossless transmission using third-order Raman amplification based on ultralong fiber lasers," J. Opt. Soc. Am. B 29, 847-854 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-4-847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002). [CrossRef]
  2. G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003). [CrossRef]
  3. C. Rasmusssen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40G transmission over transpacific distance (10000 km) using CSRZ-DPSK, enhanced FEC, and all Raman amplified 100 km ultrawave fiber spans,” J. Lightwave Technol. 22, 203–207 (2004). [CrossRef]
  4. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).
  5. V. E. Perlin and H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,” in Proceedings of Optical Fiber Communications Conference, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WB1.
  6. J. D. Ania-Castanon, “Quasi-lossless transmission using second-order Raman amplification and fiber Bragg gratings,” Opt. Express 12, 4372–4377 (2004). [CrossRef]
  7. Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006). [CrossRef]
  8. Z. Liao and G. P. Agrawal, “Role of distributed amplification in designing high-capacity soliton systems,” Opt. Express 9, 66–71 (2001). [CrossRef]
  9. M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J. D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett. 34, 3104–3106 (2009). [CrossRef]
  10. T. Okuno, T. Tsuzaki, and M. Nishimura, “Novel optical hybrid line configuration for quasi-lossless transmission by distributed Raman amplification,” IEEE Photon. Technol. Lett. 13, 806–808 (2001). [CrossRef]
  11. J.-C. Bouteiller, K. Brar, and C. Headley, “Quasi-constant signal power transmission,” in 28th European Conference on Optical Communication, 2002 (IEEE, 2002), Vol. 3, pp. 1–2.
  12. D. A. Chestnut, C. J. S. de Matos, P. C. Reeves-Hall, and J. R. Taylor, “Copropagating and counterpropagating pumps in second-order- pumped discrete fiber Raman amplifiers,” Opt. Lett. 27, 1708–1710 (2002). [CrossRef]
  13. J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006). [CrossRef]
  14. S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32, 1135–1137 (2007). [CrossRef]
  15. V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15, 16690–16695 (2007). [CrossRef]
  16. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008). [CrossRef]
  17. Y. J. Rao, X. H. Jia, L. Li, and Z. L. Ran, “Detailed investigation on gain-clamping characteristics of ultralong fiber Raman laser using FBGs,” J. Opt. Soc. Am. B 26, 1334–1340 (2009). [CrossRef]
  18. V. E. Perlin and H. G. Winful, “On distributed Raman amplification for ultrabroad-band long-haul WDM systems,” J. Lightwave Technol. 20, 409–416 (2002). [CrossRef]
  19. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009). [CrossRef]
  20. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010). [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited