OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1048–1054

Instantaneous electric energy and electric power dissipation in dispersive media

Wonseok Shin, Aaswath Raman, and Shanhui Fan  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 1048-1054 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive the instantaneous densities of electric energy and electric power dissipation in lossless and lossy dispersive media for a time-harmonic electric field. The instantaneous quantities are decomposed into DC and AC components, some of which are shown to be independent of the dispersion of dielectric constants. The AC component of the instantaneous energy density can be used to visualize propagation of electromagnetic waves through complex 3D structures.

© 2012 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

Original Manuscript: November 14, 2011
Revised Manuscript: December 26, 2011
Manuscript Accepted: December 27, 2011
Published: April 24, 2012

Wonseok Shin, Aaswath Raman, and Shanhui Fan, "Instantaneous electric energy and electric power dissipation in dispersive media," J. Opt. Soc. Am. B 29, 1048-1054 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  2. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A: Gen. Phys. 3, 233–245 (1970). [CrossRef]
  3. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth–Heinemann, 1984), 2nd ed. Section 80.
  4. V. Polevoi, “Maximum energy extractable from an electromanetic field,” Radiophys. Quantum Electron. 33, 603–609 (1990). [CrossRef]
  5. R. W. Ziolkowski, “Superluminal transmission of information through an electromagnetic metamaterial,” Phys. Rev. E 63, 046604 (2001). [CrossRef]
  6. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299, 309–312 (2002). [CrossRef]
  7. T. Cui and J. Kong, “Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,” Phys. Rev. B 70, 205106 (2004).
  8. S. Tretyakov, “Electromagnetic field energy density in artificial microwave materials with strong dispersion and loss,” Phys. Lett. A 343, 231–237 (2005). [CrossRef]
  9. P.-G. Luan, “Power loss and electromagnetic energy density in a dispersive metamaterial medium,” Phys. Rev. E 80, 046601 (2009). [CrossRef]
  10. K. Webb and Shivanand, “Electromagnetic field energy in dispersive materials,” J. Opt. Soc. Am. B 27, 1215–1220(2010). [CrossRef]
  11. F. D. Nunes, T. C. Vasconcelos, M. Bezerra, and J. Weiner, “Electromagnetic energy density in dispersive and dissipative media,” J. Opt. Soc. Am. B 28, 1544–1552 (2011). [CrossRef]
  12. The derivation given in this paper for electrically dispersive media can be easily extended to magnetically dispersive media, which is described by a frequency-dependent magnetic permeability μ(ω)=μ′(ω)−iμ′′(ω).
  13. A. Raman and S. Fan, “Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem,” Phys. Rev. Lett.087401 (2010).
  14. J. D. Jackson, Classical Electrodynamics (Wiley, 1999), 3rd ed. Section 7.10.
  15. A. Sommerfeld, Mechanics (Academic, 1956). Section III.19.
  16. J. B. Marion and S. T. Thornton, Classical Dynamics of Particles and Systems (Saunders College, 1995), 4th ed. Section 3.6.
  17. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices.” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  18. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mat. 22, 5120–5124 (2010). [CrossRef]
  19. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig 2. Fig 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited