OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 1085–1093

Optical self-trapping in a photopolymer doped with Ag nanoparticles: a single-step route to metallodielectric cylindrical waveguides

Liqun Qiu and Kalaichelvi Saravanamuttu  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 1085-1093 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1040 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A cw, visible laser beam self-traps by initiating free-radical polymerization in an organosiloxane photopolymer doped with a well-characterized distribution of Ag nanoparticles. The self-trapped beam propagates over long distances (Rayleigh range) without diverging and permanently inscribes a cylindrical metallodielectric waveguide containing a dispersion of Ag nanoparticles. The self-trapped beam evolves from single-mode to multimode guidance over time; the effects of nanoparticle concentration on multimode dynamics were investigated. These findings open room temperature, soft polymer-based pathways where self-action effects including self-trapping and modulation instability can be exploited to spontaneously generate three-dimensional metallodielectric single or multiple cylindrical waveguides.

© 2012 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5940) Nonlinear optics : Self-action effects
(260.5950) Physical optics : Self-focusing
(350.3450) Other areas of optics : Laser-induced chemistry
(110.6895) Imaging systems : Three-dimensional lithography
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Nonlinear Optical Materials

Original Manuscript: November 28, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 31, 2012
Published: April 25, 2012

Liqun Qiu and Kalaichelvi Saravanamuttu, "Optical self-trapping in a photopolymer doped with Ag nanoparticles: a single-step route to metallodielectric cylindrical waveguides," J. Opt. Soc. Am. B 29, 1085-1093 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999). [CrossRef]
  2. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007). [CrossRef]
  3. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004). [CrossRef]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  5. A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006). [CrossRef]
  6. L. M. Liz-Marzán, “Nanometals formation and color,” Mater. Today 7(2), 26–31 (2004). [CrossRef]
  7. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011). [CrossRef]
  8. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011). [CrossRef]
  9. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  10. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005). [CrossRef]
  11. E. C. L. Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006). [CrossRef]
  12. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007). [CrossRef]
  13. J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecule’s fluorescence,” Opt. Express 17, 13532–13540 (2009). [CrossRef]
  14. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009). [CrossRef]
  15. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-abosorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142(2005). [CrossRef]
  16. A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901(2008). [CrossRef]
  17. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992). [CrossRef]
  18. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986). [CrossRef]
  19. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18, 373–375 (1993). [CrossRef]
  20. A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chem. Mater. 13, 1674–1681 (2001). [CrossRef]
  21. O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction,” Chem. Mater. 16, 4202–4204 (2004). [CrossRef]
  22. L. M. Bronstein, D. M. Chernyshov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, “Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane),” Langmuir 16, 8221–8225 (2000). [CrossRef]
  23. S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005). [CrossRef]
  24. A. Dawn, P. Mukherjee, and A. K. Nandi, “Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer,” Langmuir 23, 5231–5237 (2007). [CrossRef]
  25. K. Akamatsu, N. Tsuboi, Y. Hatakenaka, and S. Deki, “In situ spectroscopic and microscopic study on dispersion of Ag nanoparticles in polymer thin films,” J. Phys. Chem. B 104, 10168–10173 (2000). [CrossRef]
  26. K. Huber, T. Witte, J. Hollmann, and S. Keuker-Baumann, “Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution,” J. Am. Chem. Soc. 129, 1089–1094 (2007). [CrossRef]
  27. A. L. Stepanov and R. I. Khaibullin, “Optics of metal nanoparticles fabricated in organic matrix by ion implantation,” Rev. Adv. Mater. Sci. 7, 108–125 (2004).
  28. M. Quinten, A. Heilmann, and A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B: Lasers Opt. 68, 707–712 (1999). [CrossRef]
  29. B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003). [CrossRef]
  30. H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, “In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles,” Macromolecules 39, 8451–8455 (2006). [CrossRef]
  31. M. Malenovska, S. Martinez, M.-A. Neouze, and U. Schubert, “Growth of metal nanoparticles in a sol-gel silica thin film,” Eur. J. Inorg. Chem. 2007, 2609–2611 (2007). [CrossRef]
  32. V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004). [CrossRef]
  33. W. Schärtl, “Crosslinked spherical nanoparticles with core-shell topology,” Adv. Mater. 12, 1899–1908 (2000). [CrossRef]
  34. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996). [CrossRef]
  35. C. Graf and A. V. Blaaderen, “Metallodielectric colloidal core-shell particles for photonic applications,” Langmuir 18, 524–534 (2002). [CrossRef]
  36. C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999). [CrossRef]
  37. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995). [CrossRef]
  38. Y. Lu, G. L. Liu, and L. P. Lee, “High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate,” Nano Lett. 5, 5–9 (2005). [CrossRef]
  39. N. Horimoto, N. Ishikawa, and A. Nakajima, “Preparation of a SERS substrate using vacuum-synthesized silver nanoparticles,” Chem. Phys. Lett. 413, 78–83 (2005). [CrossRef]
  40. A. D. McFarland and R. P. V. Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003). [CrossRef]
  41. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006). [CrossRef]
  42. A. Lin, D. H. Son, I. H. Ahn, G. H. Song, and W-T. Han, “Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber,” Opt. Express 15, 6374–6379 (2007). [CrossRef]
  43. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996). [CrossRef]
  44. Y. Yang, G. P. Wang, J. Xie, and S. Zhang, “Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography,” Appl. Phys. Lett. 86, 173108 (2005). [CrossRef]
  45. M. Bockstaller, R. Kolb, and E. L. Thomas, “Metallodielectric photonic crystals based on diblock copolymers,” Adv. Mater. 13, 1783–1786 (2001). [CrossRef]
  46. A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009). [CrossRef]
  47. A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M(2007). [CrossRef]
  48. L. Qiu, J. Franc, A. Rewari, D. Blanc, and K. Saravanamuttu, “Photolytic formation of Ag nanoparticles in oligomeric organosiloxanes: new photolithographic routes to metallodielectric microperiodic structures,” J. Mater. Chem. 19, 373–378(2009). [CrossRef]
  49. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999). [CrossRef]
  50. S. Trillo and W. Torruellas, Spatial Solitons, 1st ed. (Springer, 2001).
  51. A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997). [CrossRef]
  52. T. M. Monro, C. M. De Sterke, and L. Poladian, “Topical review—catching light in its own trap,” J. Mod. Opt. 48, 191–238 (2001). [CrossRef]
  53. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006). [CrossRef]
  54. J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc. 128, 14913–14923 (2006). [CrossRef]
  55. J. Zhang and K. Saravanamuttu, “Nonlinear propagation of incoherent white light in a photopolymerizable medium: evidence of the co-existence and competition between spontaneous pattern formation and self-trapping,” J. Mater. Sci. Mater. Electron. 20, 380–384 (2009). [CrossRef]
  56. A. B. Villafranca and K. Saravanamuttu, “An experimental study of the dynamics and temproal evolution of self-trapped laser beams in a photopolymerizable organosiloxane,” J. Phys. Chem. C 112, 17388–17396 (2008). [CrossRef]
  57. J. A. Dean, Lange’s Handbook of Chemistry, 15th ed. (McGraw-Hill, 1999).
  58. The effective beam diameter is the diameter of a circle with an area equal to the area of all pixels with an intensity above 13.5% (that is, 1/e2) of the measured beam peak intensity in the CCD camera. It represents the actual beam diameter only for beams with a Gaussian profile. For non-Gaussian profiles, the effective beam diameter recorded by the camera only indicates how wide the beam intensity spreads.
  59. The relative peak intensity is the ratio between the greatest intensity on one or more pixels in an image and the saturation intensity of the camera.
  60. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, 2004).
  61. In order to obtain optical spectra of self-written waveguides, optical self-trapping was performed directly with the probing white light (400–740 nm). Spectra were collected after optical self-trapping had been successfully observed to make sure that the probing beam had been well confined within the formed waveguide. The setup for optical self-trapping with incoherent white light was described in [54].
  62. T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996). [CrossRef]
  63. K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett. 93, 051111 (2008). [CrossRef]
  64. I. B. Burgess, M. R. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem. 18, 4133–4139 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited