OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 5 — May. 1, 2012
  • pp: 950–958

Guided plasmon modes of triangular and inverted triangular cross-section silver nanoridges

Zeyu Pan, Junpeng Guo, Richard Soref, Walter Buchwald, and Greg Sun  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 950-958 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1683 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Propagating plasmon modes guided along silver metal nanoridges with triangular and inverted triangular cross sections are investigated in this paper. Mode field profiles, dispersion curves, propagation distances, and figure-of-merits of the plasmon modes are calculated for silver nanoridges with various triangular and inverted triangular waveguide cross sections. It is found that the triangular cross-section nanoridge waveguide, if designed properly, can have longer propagation distance and higher figure-of-merit than the flat-top nanoridge waveguide of the same width. When the triangle height of the nanoridge is high, the mode approaches the small angle wedge mode. An inverted triangular cross-section nanoridge mode can be considered as a hybrid mode of two metal wedge plasmon modes. When inverted triangle depth increases, the propagation distance and the figure-of-merit decrease dramatically, suggesting poorer performance when compared to the flat-top nanoridge plasmon waveguide.

© 2012 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: January 5, 2012
Revised Manuscript: February 1, 2012
Manuscript Accepted: February 6, 2012
Published: April 11, 2012

Zeyu Pan, Junpeng Guo, Richard Soref, Walter Buchwald, and Greg Sun, "Guided plasmon modes of triangular and inverted triangular cross-section silver nanoridges," J. Opt. Soc. Am. B 29, 950-958 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons On Smooth and Rough Surfaces and On Gratings (Springer-Verlag, 1988).
  2. E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130–136 (1960). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  4. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969). [CrossRef]
  5. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  6. A. E. Craig, G. A. Olson, and D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983). [CrossRef]
  7. G. I. Stegeman, J. J. Burke, and D. G. Hall, “Surface-polaritonlike waves guided by thin, lossy metal films,” Opt. Lett. 8, 383–385 (1983). [CrossRef]
  8. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991). [CrossRef]
  9. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000). [CrossRef]
  10. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000). [CrossRef]
  11. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001). [CrossRef]
  12. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005). [CrossRef]
  13. A. Degiron, and D. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006). [CrossRef]
  14. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000). [CrossRef]
  15. P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102, 053105–053108 (2007). [CrossRef]
  16. S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329 (2004). [CrossRef]
  17. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999). [CrossRef]
  18. J. Q. Lu, and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990). [CrossRef]
  19. I. V. Novikov, and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002). [CrossRef]
  20. D. K. Gramotnev, and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004). [CrossRef]
  21. D. F. P. Pile, and D. K. Gramotnev, “Channel plasmon-polariton in atriangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004). [CrossRef]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef]
  23. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006). [CrossRef]
  24. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006). [CrossRef]
  25. E. Feigenbaum, and M. Orenstein, “Modeling of complementary (void) plasmon waveguiding,” J. Lightwave Technol. 25, 2547–2562 (2007). [CrossRef]
  26. M. Yan, and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007). [CrossRef]
  27. Y. Satuby, and M. Orenstein, “Surface plasmon-polariton modes in deep metallic trenches—measurement and analysis,” Opt. Express 15, 4247–4252 (2007). [CrossRef]
  28. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005). [CrossRef]
  29. G. Veronis, and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007). [CrossRef]
  30. L. Wendler, and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986). [CrossRef]
  31. J. Guo, and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006). [CrossRef]
  32. J. Chen, G. A. Smolyakov, S. R. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008). [CrossRef]
  33. J. Guo, and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16, 1232–1237 (2008). [CrossRef]
  34. R. Adato, and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306–034311 (2009). [CrossRef]
  35. F. Y. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12, 367–369 (1987). [CrossRef]
  36. Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra-short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 7279–7290 (2006). [CrossRef]
  37. R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007). [CrossRef]
  38. R. Adato and J. Guo, “Novel metal-dielectric structures for guiding ultra-long-range surface plasmon-polaritons at optical frequencies,” Proc. SPIE 6641, 66410G (2007). [CrossRef]
  39. Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding,” Appl. Phys. Lett. 91, 111112 (2007). [CrossRef]
  40. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007). [CrossRef]
  41. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006). [CrossRef]
  42. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008). [CrossRef]
  43. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008). [CrossRef]
  44. C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55–B60 (2009). [CrossRef]
  45. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010). [CrossRef]
  46. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Surface plasmon dielectric waveguides,” Appl. Phys. Lett. 87, 241106 (2005). [CrossRef]
  47. A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981). [CrossRef]
  48. J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus Anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003). [CrossRef]
  49. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005). [CrossRef]
  50. E. Feigenbaum and M. Orenstein, “Nano plasmon polariton modes of a wedge cross section metal waveguide,” Opt. Express 14, 8779–8784 (2006). [CrossRef]
  51. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008). [CrossRef]
  52. E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008). [CrossRef]
  53. Z. Pan, J. Guo, R. Soref, W. Buchwald, and G. Sun, “Mode properties of flat-top silver nanoridge surface plasmon waveguides,” J. Opt. Soc. Am. B 29, 340–345 (2012). [CrossRef]
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  55. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008). [CrossRef]
  56. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010). [CrossRef]
  57. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004). [CrossRef]
  58. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006). [CrossRef]
  59. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited