OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 6 — Jun. 1, 2012
  • pp: 1296–1304

Efficient Lanczos–Fourier expansion-based transmission line formulation for full-wave modal analysis of optical waveguides

Amir Habibzadeh-Sharif and Mohammad Soleimani  »View Author Affiliations

JOSA B, Vol. 29, Issue 6, pp. 1296-1304 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1361 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Fourier expansion-based transmission line (TL) formulation has been modified using the Lanczos correction factor for the full-wave modal analysis of dielectric optical waveguides. Also, an algorithm for systematic determination of the optimum values for the main simulation parameters of the presented formulation has been proposed. These optimum parameters provide a trade-off between accuracy, speed, and memory usage and consequently improve the efficiency of simulations. This algorithmic formulation has been applied for the modal analysis of optical channel, strip, and strip-based slot waveguides, and good results have been obtained for dispersion characteristics and electromagnetic (EM) field distributions of their guided modes.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(040.6040) Detectors : Silicon
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Integrated Optics

Original Manuscript: October 17, 2011
Revised Manuscript: March 28, 2012
Manuscript Accepted: March 29, 2012
Published: May 17, 2012

Amir Habibzadeh-Sharif and Mohammad Soleimani, "Efficient Lanczos–Fourier expansion-based transmission line formulation for full-wave modal analysis of optical waveguides," J. Opt. Soc. Am. B 29, 1296-1304 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).
  2. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, 1991).
  3. C. Yeh and F. I. Shimabukuro, The Essence of Dielectric Waveguides (Springer, 2008).
  4. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006).
  5. D. Marcuse, “Solution of the vector wave equation for general dielectric waveguides by the Galerkin method,” IEEE J. Quantum Electron. 28, 459–465 (1992). [CrossRef]
  6. W. Huang and H. A. Haus, “A simple variational approach to optical rib waveguides,” J. Lightwave Technol. 9, 56–61 (1991). [CrossRef]
  7. M. S. Stern, P. C. Kendall, and P. W. A. Mcllroy, “Analysis of the spectral index method for vector modes of rib waveguides,” IEE Proc. J. Optoelectron. 137, 21–26 (1990). [CrossRef]
  8. K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguides by a new finite difference method,” J. Lightwave Technol. 34, 1104–1113 (1986).
  9. M. S. Stern, “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” IEE Proc. J. Optoelectron. 135, 56–63 (1988). [CrossRef]
  10. H. Dong, A. Chronopoulos, J. Zou, and A. Gopinath, “Vectorial integrated finite-difference analysis of dielectric waveguides,” J. Lightwave Technol. 11, 1559–1564 (1993). [CrossRef]
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  12. N. Mabaya and P. E. Lagasse, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Tech. 29, 600–605 (1981). [CrossRef]
  13. B. M. A. Rahman and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE Trans. Microwave Theory Tech. 32, 20–28 (1984). [CrossRef]
  14. S. Selleri and A. Petracek, “Modal analysis of rib waveguide through finite element and mode matching methods,” Opt. Quantum Electron. 33, 373–386 (2001). [CrossRef]
  15. W. P. Huang, C. L. Xu, S. T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method-analysis and assessment,” J. Lightwave Technol. 10, 295–305 (1992). [CrossRef]
  16. P. C. Lee and E. Voges, “Three-dimensional semi-vectorial wide-angle beam propagation method,” J. Lightwave Technol. 12, 215–225 (1994). [CrossRef]
  17. C. C. Huang, “Simulation of optical waveguides by novel full-vectorial pseudospectral-based imaginary-distance beam propagation method,” Opt. Express 16, 17915–17934 (2008). [CrossRef]
  18. S. Khorasani and K. Mehrany, “Differential transfer-matrix method for solution of one-dimensional linear nonhomogeneous optical structures,” J. Opt. Soc. Am. B 20, 91–96 (2003). [CrossRef]
  19. M. H. Eghlidi, K. Mehrany, and B. Rashidian, “Modified differential-transfer-matrix method for solution of one-dimensional linear inhomogeneous optical structures,” J. Opt. Soc. Am. B 22, 1521–1528 (2005). [CrossRef]
  20. U. Rogge and R. Pregla, “Method of lines for the analysis of strip-loaded optical waveguides,” J. Opt. Soc. Am. B 8, 459–463 (1991). [CrossRef]
  21. U. Rogge, and R. Pregla, “Method of lines for the analysis of dielectric waveguides,” J. Lightwave Technol. 11, 2015–2020 (1993). [CrossRef]
  22. S. Sudbo, “Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides,” Pure Appl. Opt. 3, 381–388 (1994). [CrossRef]
  23. M. Lohmeyer, “Wave-matching method for mode analysis of dielectric waveguides,” Opt. Quantum Electron. 29, 907–922 (1997). [CrossRef]
  24. M. Lohmeyer, “Vectorial wave-matching mode analysis of integrated optical waveguides,” Opt. Quantum Electron. 30, 385–396 (1998). [CrossRef]
  25. C. C. Huang, “Numerical calculations of ARROW structures by pseudospectral approach with Mur’s absorbing boundary conditions,” Opt. Express 14, 11631–11652 (2006). [CrossRef]
  26. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990). [CrossRef]
  27. Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett. 65, 2650–2653 (1990). [CrossRef]
  28. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000). [CrossRef]
  29. C. Vassallo, “1993-1995 optical mode solvers,” Opt. Quantum Electron. 29, 95–114 (1997). [CrossRef]
  30. J. Shibayama, M. Muraki, J. Yamauchi, and H. Nakano, “Comparative study of several time-domain methods for optical waveguide analyses,” J. Lightwave Technol. 23, 2285–2293 (2005). [CrossRef]
  31. M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEE Proc. Sci. Measure. Tech. 151, 327–334 (2004). [CrossRef]
  32. Z. G. Kashani, N. Hojjat, and M. Shahabadi, “Full-wave analysis of coupled waveguides in a two-dimensional photonic crystal,” Prog. Electromagn. Res. 49, 291–307 (2004). [CrossRef]
  33. M. Ahmadi-Boroujeni and M. Shahabadi, “Modal analysis of multilayer planar lossy anisotropic optical waveguides,” J. Opt. A 8, 856–863 (2006). [CrossRef]
  34. M. Ahmadi-Boroujeni and M. Shahabadi, “Full-wave analysis of lossy anisotropic optical waveguides using a transmission line approach based on a Fourier method,” J. Opt. A 8, 1080–1087 (2006). [CrossRef]
  35. N. Dabidian, M. Shahabadi, and A. Tavakoli, “Diffraction analysis of photonic metamaterials using a transmission line formulation,” Proc. SPIE 6581, 658111 (2007). [CrossRef]
  36. V. R. Almeida, Q. Xu, R. R. Panepucci, C. A. Barrios, and M. Lipson, “Light guiding in low index materials using high-index-contrast waveguides,” Mater. Res. Soc. Symp. Proc. 797, W6.10.1–W6.10.6 (2004).
  37. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  38. Q. Xu, V. R. Almeida, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004). [CrossRef]
  39. C. Lanczos, Applied Analysis, (Prentice Hall, 1956).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited