Singlephotonassisted entanglement concentration of a multiphoton system in a partially entangled

JOSA B, Vol. 29, Issue 6, pp. 13991405 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001399
Enhanced HTML Acrobat PDF (257 KB)
Abstract
We propose a nonlocal entanglement concentration protocol (ECP) for
© 2012 Optical Society of America
OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing
ToC Category:
Quantum Optics
History
Original Manuscript: March 19, 2012
Manuscript Accepted: March 28, 2012
Published: May 23, 2012
Citation
FangFang Du, Tao Li, BaoCang Ren, HaiRui Wei, and FuGuo Deng, "Singlephotonassisted entanglement concentration of a multiphoton system in a partially entangled W state with weak crossKerr nonlinearity," J. Opt. Soc. Am. B 29, 13991405 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab2961399
Sort: Year  Journal  Reset
References
 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
 A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
 C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
 G. L. Long and X. S. Liu, “Theoretically efficient highcapacity quantumkeydistribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
 F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
 X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
 C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
 C. H. Bennett and S. J. Wiesner, “Communication via one and twoparticle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
 X. S. Liu, G. L. Long, D. M. Tong, and L. Feng, “General scheme for superdense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
 M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
 A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999). [CrossRef]
 L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantumsecretsharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
 F. G. Deng, G. L. Long, and H. Y. Zhou, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A 337, 329–334 (2005). [CrossRef]
 F. G. Deng, X. H. Li, and H. Y. Zhou, “Efficient highcapacity quantum secret sharing with twophoton entanglement,” Phys. Lett. A 372, 1957–1962 (2008). [CrossRef]
 Z. J. Zhang, Y. Li, and Z. X. Man, “Multiparty quantum secret sharing,” Phys. Rev. A 71, 044301 (2005). [CrossRef]
 F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005). [CrossRef]
 F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005). [CrossRef]
 A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, and P. K. Lam, “Tripartite quantum state sharing,” Phys. Rev. Lett. 92, 177903 (2004). [CrossRef]
 F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantumstate sharing of an arbitrary twoparticle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
 F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Quantum state sharing of an arbitrary twoqubit state with twophoton entanglements and Bellstate measurements,” Eur. Phys. J. D 39, 459–464 (2006). [CrossRef]
 X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary mqubit state,” J. Phys. B 39, 1975–1983 (2006). [CrossRef]
 Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient and economic fiveparty quantum state sharing of an arbitrary mqubit state,” Eur. Phys. J. D 48, 279–284 (2008). [CrossRef]
 A. Karlsson and M. Bourennane, “Quantum teleportation using threeparticle entanglement,” Phys. Rev. A 58, 4394–4400 (1998). [CrossRef]
 C. P. Yang, S. I. Chu, and S. Han, “Efficient manyparty controlled teleportation of multiqubit quantum information via entanglement,” Phys. Rev. A 70, 022329 (2004). [CrossRef]
 F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multipartycontrolled teleportation of an arbitrary twoparticle entanglement,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
 Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherencefree subspaces in quantum key distribution,” Phys. Rev. Lett. 91, 087901 (2003). [CrossRef]
 J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarizationbased quantum key distribution over a collectivenoise channel,” Phys. Rev. Lett. 92, 017901 (2004). [CrossRef]
 J. C. Boileau, R. Laflamme, M. Laforest, and C. R. Myers, “Robust quantum communication using a polarizationentangled photon pair,” Phys. Rev. Lett. 93, 220501 (2004). [CrossRef]
 X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
 T. Yamamoto, J. Shimamura, S. K. Özdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005). [CrossRef]
 X. H. Li, B. K. Zhao, Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient faithful qubit transmission with frequency degree of freedom,” Opt. Commun. 282, 4025–4027 (2009). [CrossRef]
 X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007). [CrossRef]
 F. G. Deng, X. H. Li, and H. Y. Zhou, “Passively selferrorrejecting qubit transmission over a collectivenoise channel,” Quantum Inf. Comput. 11, 0913–0924 (2011).
 Y. B. Sheng and F. G. Deng, “Efficient quantum entanglement distribution over an arbitrary collectivenoise channel,” Phys. Rev. A 81, 042332 (2010). [CrossRef]
 C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
 D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
 J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef]
 C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901(2002). [CrossRef]
 Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarizationentanglement purification based on parametric downconversion sources with crossKerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
 Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bellstate analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
 X. H. Li, “Deterministic polarizationentanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
 Y. B. Sheng and F. G. Deng, “Onestep deterministic polarizationentanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010). [CrossRef]
 F. G. Deng, “Onestep error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
 C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electronspin entangled states using quantumdot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
 C. Wang, Y. Zhang, and G. S. Jin, “Polarizationentanglement purification and concentration using crossKerr nonlinearity,” Quantum Inf. Comput. 11, 0988–1002 (2011).
 F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
 C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
 S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A 60, 194–197 (1999). [CrossRef]
 B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
 T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
 Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
 Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
 Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Singlephoton entanglement concentration for longdistance quantum communication,” Quantum Inf. Comput. 10, 0272–0281 (2010).
 Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient singlephotonassisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
 F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
 M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005). [CrossRef]
 Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006). [CrossRef]
 H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled threephoton W states,” Eur. Phys. J. D 56, 271–275 (2010). [CrossRef]
 H. F. Wang, S. Zhang, and K. H. Yeon, “Linearopticsbased entanglement concentration of unknown partially entangled threephoton W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010). [CrossRef]
 W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with crossKerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
 K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controllednot gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
 S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bellstate detection using weak nonlinearities,” Phys. Rev. A 71, 060302 (2005). [CrossRef]
Cited By 
Alert me when this paper is cited 
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's CitedBy Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article  Next Article »
OSA is a member of CrossRef.