OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 7 — Jul. 1, 2012
  • pp: 1631–1640

Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams

Bingzhong Huo, Xianghui Wang, Shengjiang Chang, and Ming Zeng  »View Author Affiliations


JOSA B, Vol. 29, Issue 7, pp. 1631-1640 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001631


View Full Text Article

Enhanced HTML    Acrobat PDF (1289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Both the surface and bulk nonlinear responses of a single centrosymmetric nanosphere excited by tightly focused cylindrical vector beams with different polarization rotation angles are investigated theoretically. The numerical results show that a distinctive feature of the calculated surface second harmonic (SH) radiation angular patterns is the possibility of strong scattering in the backward direction. In addition, when the polarization rotation angle takes a larger value, there is a distinct difference between the bulk SH responses stemming from different bulk nonlinear parameters. Those properties are in contrast to what was found in previous theories of SH light scattering from centrosymmetric nanospheres excited by tightly focused linearly polarized beams.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 19, 2011
Revised Manuscript: March 30, 2012
Manuscript Accepted: March 30, 2012
Published: June 13, 2012

Citation
Bingzhong Huo, Xianghui Wang, Shengjiang Chang, and Ming Zeng, "Second harmonic generation of a single centrosymmetric nanosphere illuminated by tightly focused cylindrical vector beams," J. Opt. Soc. Am. B 29, 1631-1640 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-7-1631


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996). [CrossRef]
  2. J. A. Litwin, J. E. Sipe, and H. M. van Driel, “Picosecond and nanosecond laser-induced second-harmonic generation from centrosymmetric semiconductors,” Phys. Rev. B 31, 5543–5546 (1985). [CrossRef]
  3. E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998). [CrossRef]
  4. Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001). [CrossRef]
  5. A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716–718 (2003). [CrossRef]
  6. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010). [CrossRef]
  7. J. Butet, G. Bachelier, J. Duboisset, F. Bertorelle, I. Russier-Antoine, C. Jonin, E. Benichou, and P. Brevet, “Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation,” Opt. Express 18, 22314–22323 (2010). [CrossRef]
  8. X. Vidal, A. Fedyanin, A. Molinos-Gómez, S. Rao, J. Martorell, and D. Petrov, “Nonlinear optical response from single spheres coated by a nonlinear monolayer,” Opt. Lett. 33, 699–701 (2008). [CrossRef]
  9. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925 (2003). [CrossRef]
  10. M. Hashimoto, K. Ashida, K. Yoshiki, and T. Araki, “Enhancement of second-harmonic generation from self-assembled monolayers on gold by excitation with a radially polarized beam,” Opt. Lett. 34, 1423–1425 (2009). [CrossRef]
  11. Y. Kozawa and S. Sato, “Observation of the longitudinal field of a focused laser beam by second-harmonic generation,” J. Opt. Soc. Am. B 25, 175–179 (2008). [CrossRef]
  12. R. Bernal and J. A. Maytorena, “Second harmonic generation from centrosymmetric thin films by a focused beam with arbitrary transverse structure,” Phys. Rev. B 70, 125420 (2004). [CrossRef]
  13. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007). [CrossRef]
  14. B. Huo, X. Wang, S. Chang, M. Zeng, and G. Zhao, “Second harmonic generation of individual centrosymmetric sphere excited by a tightly focused beam,” J. Opt. Soc. Am. B 28, 2702–2711 (2011). [CrossRef]
  15. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999). [CrossRef]
  16. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347(2004). [CrossRef]
  17. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78, 205322 (2008). [CrossRef]
  18. W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003). [CrossRef]
  19. V. L. Brudny, B. S. Mendoza, and W. Luis Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000). [CrossRef]
  20. A. G. F. de Beer and S. Roke, “Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects,” Phys. Rev. B 75, 245438 (2007). [CrossRef]
  21. S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: the concept of effective susceptibility,” Phys. Rev. B 70, 115106 (2004). [CrossRef]
  22. Y. Pavlyukh and W. Hübner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70, 245434 (2004). [CrossRef]
  23. A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79, 155420 (2009). [CrossRef]
  24. G. Gonella and H. L. Dai, “Determination of adsorption geometry on spherical particles from nonlinear Mie theory analysis of surface second harmonic generation,” Phys. Rev. B 84, 121402(2011). [CrossRef]
  25. J. Martorell, R. Vilaseca, and R. Corbalán, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997). [CrossRef]
  26. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001). [CrossRef]
  27. S. H. Jen, and H. L. Dai, “Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation,” J. Phys. Chem. B 110, 23000–23003 (2006). [CrossRef]
  28. S. H. Jen, H. L. Dai, and G. Gonella, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: the nonlinear Rayleigh-Gans-Debye model,” J. Phys. Chem. C 114, 4302–4308 (2010). [CrossRef]
  29. J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006). [CrossRef]
  30. S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302 (2003). [CrossRef]
  31. A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett. 102, 095502 (2009). [CrossRef]
  32. J. S. Salafsky, “Detection of protein conformational change by optical second-harmonic generation,” J. Chem. Phys. 125, 074701 (2006). [CrossRef]
  33. J. H. Kim and M. W. Kim, “In-situ observation of the inside-to-outside molecular transport of a liposome,” J. Phys. Chem. B 112, 15673–15677 (2008). [CrossRef]
  34. Y. You, A. Bloomfield, J. Liu, L. Fu, S. B. Herzon, and E. C. Y. Yan, “Real-time kinetics of surfactant molecule transfer between emulsion particles probed by in situ second harmonic generation spectroscopy,” J. Am. Chem. Soc. 134, 4264–4268 (2012). [CrossRef]
  35. A. Yamaguchi, M. Nakano, K. Nochi, T. Yamashita, K. Morita, and N. Teramae, “Longitudinal diffusion behavior of hemicyanine dyes across phospholipid vesicle membranes as studied by second-harmonic generation and fluorescence spectroscopies,” Anal. Bioanal. Chem. 386, 627–632 (2006). [CrossRef]
  36. S. Roke, “Nonlinear optical spectroscopy of soft matter interfaces,” Chem. Phys. Chem. 10, 1380–1388 (2009). [CrossRef]
  37. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254–8263 (1986). [CrossRef]
  38. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968). [CrossRef]
  39. J. E. Sipe, V. Mizrahi, and G. I. Stegeman, “Fundamental difficulty in the use of second-harmonic generation as a strictly surface probe,” Phys. Rev. B 35, 9091–9094 (1987). [CrossRef]
  40. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochán, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005). [CrossRef]
  41. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009). [CrossRef]
  42. F. X. Wang, F. J. Rodríguez, W. M. Albers, and M. Kauranen, “Enhancement of bulk-type multipolar second-harmonic generation arising from surface morphology of metals,” New J. Phys. 12, 063009 (2010). [CrossRef]
  43. T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces,” in Nonlinear Surface Electromagnetic Phenomena, H.-E. Ponath and G. I. Stegeman, eds. (Elsevier Science, 1991), pp. 353–416.
  44. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987). [CrossRef]
  45. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef]
  46. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324–331 (2002).
  47. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Elsevier Academic, 2005).
  48. F. J. Rodriguez, F. X. Wang, and M. Kauranen, “Calibration of the second-order nonlinear optical susceptibility of surface and bulk of glass,” Opt. Express 16, 8704–8710 (2008). [CrossRef]
  49. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001). [CrossRef]
  50. H. Chen, Z. Zheng, B.-F. Zhang, J. Ding, and H.-T. Wang, “Polarization structuring of focused field through polarization-only modulation of incident beam,” Opt. Lett. 35, 2825–2827 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited