OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1863–1874

Surface enhanced Raman scattering in the presence of multilayer dielectric structures

Aida Delfan, Marco Liscidini, and John E. Sipe  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 1863-1874 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001863


View Full Text Article

Enhanced HTML    Acrobat PDF (732 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform a systematic study of spontaneous Raman scattering in resonant planar structures. We present a semiclassical approach that allows the description of spontaneous Raman scattering in an arbitrary multilayer, providing analytical expressions of the Raman cross sections in terms of the Fresnel coefficients of the structure and taking into account beam size effects. Large enhancements of the Raman cross section are predicted in fully dielectric structures. In particular, given our results, truncated periodic multilayers supporting Bloch surface waves might be of interest for the realization of integrated Raman sensor devices.

© 2012 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(310.2785) Thin films : Guided wave applications
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 16, 2012
Manuscript Accepted: May 10, 2012
Published: July 3, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics
August 10, 2012 Spotlight on Optics

Citation
Aida Delfan, Marco Liscidini, and John E. Sipe, "Surface enhanced Raman scattering in the presence of multilayer dielectric structures," J. Opt. Soc. Am. B 29, 1863-1874 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-1863


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Campion, P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241–250 (1998). [CrossRef]
  2. E. L. Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier Science2008).
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  4. M. Fleischmann, P. J. Hendra, A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974). [CrossRef]
  5. S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007). [CrossRef]
  6. H. Lin, J. Mock, D. Smith, T. Gao, M. J. Sailor, “Surface-enhanced Raman scattering from silver-plated porous silicon,” J. Phys. Chem. B 108, 1165–1167 (2004). [CrossRef]
  7. F. Giorgis, E. Descrovi, A. Chiodoni, E. Froner, M. Scarpa, A. Venturello, F. Geobaldo, “Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate,” Appl. Surf. Sci. 254, 7494–7497 (2008). [CrossRef]
  8. A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, V. P. Bondarenko, “SERS-active substrates based on n-type porous silicon,” Appl. Surf. Sci. 256, 6969–6976 (2010). [CrossRef]
  9. Y. F. Chan, H. J. Xu, L. Cao, Y. Tang, D. Y. Li, X. M. Sun, “ZnO/Si arrays decorated by Au nanoparticles for surface enhanced Raman scattering study,” J. Appl. Phys. 111, 033104 (2012). [CrossRef]
  10. S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef]
  11. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]
  12. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  13. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Appl. Phys. Lett. 82, 3095 (2003). [CrossRef]
  14. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004). [CrossRef]
  15. M. Kahl, E. Voges, S. Kostrewa, C. Viets, W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B 51, 285–291 (1998). [CrossRef]
  16. X. Yang, C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, C. Gu, “High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering,” J. Opt. Soc. Am. A 27, 977–984 (2010). [CrossRef]
  17. J. F. Rabolt, “Waveguide Raman spectroscopy in the near infrared,” in Fourier Transform Raman Spectroscopy from Concept to Experiment, J. F. Rabolt, D. B. Chase, eds. (Academic, 1994), pp. 133–156.
  18. J. F. Rabolt, J. D. Swalen, “Structure and orientation in thin films: Raman studies with integrated optical techniques,” in Spectroscopy of Surfaces, R. J. H. Clark, R. E. Hester, eds., Vol. 16 of Advances in Spectroscopy (Wiley, 1988), pp. 1–36.
  19. L. Kang, R. E. Dessy, “Slab waveguide in chemistry,” Crit. Rev. Anal. Chem. 21, 377–388 (1990). [CrossRef]
  20. Y. Levy, C. Imbert, S. Cipriani, S. Racine, R. Dupeyrat, “Raman scattering of thin films as a waveguide,” Opt. Commun. 11, 66–69 (1974). [CrossRef]
  21. J. F. Rabolt, R. Santo, J. D. Swalen, “Raman measurements on thin polymer films and organic monolayers,” Appl. Spectrosc. 34, 517–521 (1980). [CrossRef]
  22. J. S. Kanger, C. Otto, M. Slotboom, J. Greve, “Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides,” J. Phys. Chem. 100, 3288–3292 (1996). [CrossRef]
  23. A. Pope, A. Schulte, Y. Guo, L. K. Ono, B. R. Cuenya, C. Lopez, K. Richardson, K. Kitanovski, T. Winningham, “Chalcogenide waveguide structures as substrates and guiding layers for evanescent wave Raman spectroscopy of bacteriorhodopsin,” Vibr. Spectrosc. 42, 249–253 (2006). [CrossRef]
  24. G. Stanev, N. Goutev, Zh. S. Nickolov, “Coupled waveguides for Raman studies of thin liquid films,” J. Phys. D 31, 1782–1786 (1998). [CrossRef]
  25. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968). [CrossRef]
  26. E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  27. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003). [CrossRef]
  28. Raman scattering in the Kretschmann configuration employing surface plasmon structures was discussed by J. Giergiel, E. Reed, J. C. Hemminger, S. Ushioda, “Surface plasmon polariton enhancement of Raman scattering in Kretschmann geometry,” J. Phys. Chem. 92, 5357–5365 (1988). [CrossRef]
  29. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 2003).
  30. P. Yeh, A. Yariv, A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105(1978). [CrossRef]
  31. M. Liscidini, J. E. Sipe, “Analysis of Bloch surface waves assisted diffraction-based biosensors,” J. Opt. Soc. Am. B 26, 279–289 (2009). [CrossRef]
  32. M. Liscidini, M. Galli, M. Shi, G. Dacarro, M. Patrini, D. Bajoni, J. E. Sipe, “Strong modification of light emission from a dye monolayer via Bloch surface waves,” Opt. Lett. 34, 2318–2320 (2009). [CrossRef]
  33. M. Shinn, W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005). [CrossRef]
  34. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18, 8087–8093 (2010). [CrossRef]
  35. V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sens. Actuators B 157, 260–264 (2011). [CrossRef]
  36. H. Qiao, B. Guan, J. J. Gooding, P. J. Reece, “Protease detection using a porous silicon based Bloch surface wave optical biosensor,” Opt. Express 18, 15174–15182 (2010). [CrossRef]
  37. E. Guillermain, V. Lysenko, T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121, 319–321 (2006). [CrossRef]
  38. J. D. Jackson, Classical Electrodynamics Third Edition (Wiley, 1999).
  39. R. Loudon, The Quantum Theory of Light (Oxford University, 2000).
  40. J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105, 489–504 (1981). [CrossRef]
  41. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2006).
  42. R. L. McCreer, Raman Spectroscopy for Chemical Analysis(Wiley, 2000).
  43. J. A. Woollam Inc., WVASE Software Manual.
  44. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  45. W. M. Robertson, A. L. Moretti, R. Bray, “Surface-plasmon-enhanced Brillouin scattering on silver films: double-resonance effect,” Phys. Rev. B 35, 8919–8928 (1987). [CrossRef]
  46. J. E. Sipe, J. Becher, “Surface energy transfer enhanced by optical cavity excitation: a pole analysis,” J. Opt. Soc. Am. 72, 288–295 (1982). [CrossRef]
  47. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [CrossRef]
  48. M. Liscidini, D. Gerace, D. Sanvitto, D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited