OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1875–1883

Coherence-modulated third harmonic generation for vibrational spectroscopy: a theoretical treatment

Jesse W. Wilson and Randy A. Bartels  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 1875-1883 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytic model is developed to describe the influence of coherent vibrational motion on optical third harmonic generation. The vibrational coherence is prepared and probed by a pair of collinear optical pulses, focused at the interface of a crystal that has vibrational modes that are accessible to impulsive Raman scattering. Under these conditions, the probe pulse generates a third harmonic signal that is perturbed by the vibrational coherence through three mechanisms uncovered by this model: (1) coherent second hyper-Raman scattering, (2) cascaded amplitude modulation, and (3) perturbation of Fresnel transmission and reflection at the interface. Upon scanning the optical pulse delay and translating the crystal through the focal plane, these three contributions exhibit key differences, which may be observed experimentally.

© 2012 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: February 13, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 1, 2012
Published: July 3, 2012

Jesse W. Wilson and Randy A. Bartels, "Coherence-modulated third harmonic generation for vibrational spectroscopy: a theoretical treatment," J. Opt. Soc. Am. B 29, 1875-1883 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. X. Yan, J. Gamble, and K. A. Nelson, “Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications,” J. Chem. Phys. 83, 5391–5399 (1985). [CrossRef]
  2. J. K. Wahlstrand, R. Merlin, X. Q. Li, S. T. Cundiff, and O. E. Martinez, “Impulsive stimulated Raman scattering: comparison between phase-sensitive and spectrally filtered techniques,” Opt. Lett. 30, 926–928 (2005). [CrossRef]
  3. J. W. Wilson, P. Schlup, and R. A. Bartels, “Synthetic temporal aperture coherent molecular phase spectroscopy,” Chem. Phys. Lett. 463, 300–304 (2008). [CrossRef]
  4. Y. R. Shen, “Surface nonlinear optical spectroscopy,” Solid State Commun. 84, 171–172 (1992). [CrossRef]
  5. Y. M. Chang, L. Xu, and H. W. K. Tom, “Observation of coherent surface optical phonon oscillations by time-resolved surface second-harmonic generation,” Phys. Rev. Lett. 78, 4649–4652 (1997). [CrossRef]
  6. T. Nomoto and H. Onishi, “Fourth-order coherent Raman spectroscopy in a time domain: applications to buried interfaces,” Phys. Chem. Chem. Phys. 9, 5515–5521 (2007). [CrossRef]
  7. D. Kupka, J. W. Wilson, O. Masihzadeh, and R. A. Bartels, “Distinguishing bulk and interface modulation of optical third harmonic generation due to coherent optical phonon excitation,” Chem. Phys. Lett. 490, 97–101 (2010). [CrossRef]
  8. J. W. Wilson and R. A. Bartels, “Rapid birefringent delay scanning for coherent multiphoton impulsive Raman pump–probe spectroscopy,” IEEE J. Sel. Top. Quantum Electron. PP, 1–10 (2012).
  9. In transforming to the group frame, a new symbol, ζ, is introduced (even though z=ζ) as a reminder that ∂/∂ζ≠∂/∂z. In fact, ∂/∂t=∂/∂tpr, ∂/∂z=−upr−1∂/∂tpr+∂/∂ζ.
  10. J. Chesnoy and A. Mokhtari, “Resonant impulsive-stimulated Raman scattering on malachite green,” Phys. Rev. A 38, 3566–3576 (1988). [CrossRef]
  11. L. Dhar, J. A. Rogers, and K. A. Nelson, “Time-resolved vibrational spectroscopy in the impulsive limit,” Chem. Rev. 94, 157–193 (1994). [CrossRef]
  12. G. Herzberg, Molecular Spectra and Molecular Structure(Krieger, 1989).
  13. E. Wilson, J. Decius, and P. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Dover, 1955).
  14. D. A. Long and L. Stanton, “Studies of nonlinear phenomena. I. Theory of the hyper Raman effect,” Proc. R. Soc. A 318, 441–457 (1970). [CrossRef]
  15. J. H. Christie and D. J. Lockwood, “Selection rules for three- and four-photon Raman interactions,” J. Chem. Phys. 54, 1141–1154 (1971). [CrossRef]
  16. T. Steffen, J. T. Fourkas, and K. Duppen, “Time resolved four- and six-wave mixing in liquids. I. Theory,” J. Chem. Phys. 105, 7364–7382 (1996). [CrossRef]
  17. P. Schlup, J. W. Wilson, and R. A. Bartels, “Sensitive and selective detection of low-frequency vibrational modes through a phase-shifting Fourier transform spectroscopy.,” IEEE J. Quantum Electron. 45, 777–782 (2009). [CrossRef]
  18. J. W. Wilson, P. Schlup, and R. A. Bartels, “Phase measurement of coherent Raman vibrational spectroscopy with chirped spectral holography,” Opt. Lett. 33, 2116–2118 (2008). [CrossRef]
  19. R. A. Bartels, T. C. Weinacht, S. R. Leone, H. C. Kapteyn, and M. M. Murnane, “Nonresonant control of multimode molecular wave packets at room temperature,” Phys. Rev. Lett. 88, 033001 (2002). [CrossRef]
  20. K. Hartinger and R. A. Bartels, “Pulse polarization splitting in a transient wave plate,” Opt. Lett. 31, 3526–3528 (2006). [CrossRef]
  21. K. Hartinger and R. A. Bartels, “Analytical model of the effective transient optical response of symmetric-top molecules in the presence of a rotational coherence,” J. Opt. Soc. Am. B 25, 407–413 (2008). [CrossRef]
  22. K. Hartinger and R. A. Bartels, “Single-shot measurement of ultrafast time-varying phase modulation induced by femtosecond laser pulses with arbitrary polarization,” Appl. Phys. Lett. 92, 021126 (2008). [CrossRef]
  23. R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102, 207–220 (1997). [CrossRef]
  24. In the Fresnel perturbation discussion, we depart from the usual notation (uppercase T for the power transmission coefficient and lowercase t for the field transmission coefficient). We denote the field transmission coefficient with an uppercase T=2ni/(nt+ni), where ni is the incident index and nt is the transmitted index, in order to avoid ambiguity with the time variable t.
  25. Y. Liu, A. Frenkel, G. A. Garrett, J. F. Whitaker, S. Fahy, C. Uher, and R. Merlin, “Impulsive light scattering by coherent phonons in LaAlO3: disorder and boundary effects,” Phys. Rev. Lett. 75, 334–337 (1995). [CrossRef]
  26. D. Stoker, M. F. Becker, and J. W. Keto, “Optical third-harmonic generation using ultrashort laser pulses,” Phys. Rev. A 71, 061802 (2005). [CrossRef]
  27. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987). [CrossRef]
  28. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  29. J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969). [CrossRef]
  30. R. S. Tasgal and Y. B. Band, “Third-harmonic generation in isotropic media by focused pulses,” Phys. Rev. A 70, 053810 (2004). [CrossRef]
  31. When solving for E0,th, we divide out Mth. This modulation term is reintroduced in Eq. (30).
  32. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997). [CrossRef]
  33. P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, and P. D. Hale, “Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12),” Appl. Opt. 35, 3562–3569 (1996). [CrossRef]
  34. A. A. Kaminskii, S. N. Bagayev, N. V. Kravstov, S. N. Chekina, Y. V. Yasiliev, N. I. Ivannikova, K. Ueda, H. J. Eichler, G. M. A. Gad, J. Hanuza, J. Fernandez, and P. Reiche, “Spectroscopy and cw laser action, magnetooptics and nonlinear optical frequency conversion in Ln3+ doped and undoped Bi4Ge3O12 and Bi4Si3O12 crystals,” Laser Phys. 11, 897–918 (2001).
  35. D. Stoker, M. C. Downer, M. F. Becker, and J. W. Keto, “Optical third-harmonic surface microscopy using ultra-short laser pulses,” Phys. Status Solidi C 2, 3978–3982 (2005). [CrossRef]
  36. A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560–2563 (1999). [CrossRef]
  37. M. B. Raschke and Y. R. Shen, “Nonlinear optical spectroscopy of solid interfaces,” Curr. Opin. Solid State Mater. Sci. 8, 343–352 (2004). [CrossRef]
  38. Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989). [CrossRef]
  39. N. Bloembergen, “Surface nonlinear optics: a historical overview,” Appl. Phys. B 68, 289–293 (1999). [CrossRef]
  40. P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, “Sum-frequency vibrational spectroscopy of a Langmuir film: study of molecular orientation of a two-dimensional system,” Phys. Rev. Lett. 59, 1597–1600 (1987). [CrossRef]
  41. Z. Chen, Y. Gao, B. C. Minch, and M. F. DeCamp, “Coherent optical phonon generation in Bi3Ge4O12,” J. Phys. Condens. Matter 23, 385402 (2011). [CrossRef]
  42. S. Mukamel, Principles of Nonlinear Optical Spectroscopy(Oxford University, 1995).
  43. R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1979). [CrossRef]
  44. U. Fano, “Description of states in quantum mechanics by density matrix and operator techniques,” Rev. Mod. Phys. 29, 74–93 (1957). [CrossRef]
  45. A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses.,” Rev. Mod. Phys 50, 607–665 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited