OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 1959–1967

Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser

Ekaterina A. Zlobina, Sergey I. Kablukov, and Sergey A. Babin  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 1959-1967 (2012)
http://dx.doi.org/10.1364/JOSAB.29.001959


View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase matching curves for parametric generation in four wave mixing (FWM) processes of different types are studied experimentally and numerically for a polarization maintaining photonic crystal fiber pumped by a tunable continuous wave ytterbium doped fiber laser near 1 μm. Parametric frequency shifts of up to 100 THz for scalar and pump-divided vector FWM processes are observed providing generation of an idler wave with wavelengths as short as 765 and 758 nm for the two processes, respectively. Explicit analytical solutions for the scalar and polarization phase matching in the vicinity of zero dispersion wavelength have been also deduced. They are based on the phase-mismatch Taylor series expansion taking into account the polarization contribution. A good quantitative agreement between the experimental and calculated frequency shifts is demonstrated.

© 2012 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 23, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: June 3, 2012
Published: July 16, 2012

Citation
Ekaterina A. Zlobina, Sergey I. Kablukov, and Sergey A. Babin, "Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser," J. Opt. Soc. Am. B 29, 1959-1967 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-1959


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol. 26, 2184–2191 (2008). [CrossRef]
  2. B. P.-P. Kuo, N. Alic, P. F. Wysocki, and S. Radic, “Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator,” J. Lightwave Technol. 29, 410–416 (2011). [CrossRef]
  3. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, “High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator,” Opt. Express 15, 2947–2952 (2007). [CrossRef]
  4. R. Malik and M. E. Marhic, “Tunable continuous-wave fiber optical parametric oscillator with 1 W output power,” in National Fiber Optic Engineers ConferenceOSA Technical Digest(Optical Society of America, 2010), paper JWA18.
  5. A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett. 35, 3198–3200 (2010). [CrossRef]
  6. K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic crystal fibres: pushing the zero-dispersion towards the visible,” New J. Phys. 8, 207 (2006). [CrossRef]
  7. R. J. Kruhlak, G. K. L. Wong, J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Polarization modulation instability in photonic crystal fibers,” Opt. Lett. 31, 1379–1381 (2006). [CrossRef]
  8. J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Cross-phase modulation instability in photonic crystal fibers,” Opt. Lett. 31, 873–875 (2006). [CrossRef]
  9. A. Clark, B. Bell, J. Fulconis, M. M. Halder, B. Cemlyn, O. Alibart, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Intrinsically narrowband pair photon generation in microstructured fibres,” New J. Phys. 13, 065009 (2011). [CrossRef]
  10. A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4, 93–102 (2007). [CrossRef]
  11. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004). [CrossRef]
  12. G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron. 47, 1396–1403 (2011). [CrossRef]
  13. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tunnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34, 3499–3501 (2009). [CrossRef]
  14. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30, 1234–1236 (2005). [CrossRef]
  15. A. Herzog, A. Shamir, and A. A. Ishaaya, “Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers,” Opt. Lett. 37, 82–84 (2012). [CrossRef]
  16. S. M. Kobtsev, S. V. Kukarin, and S. V. Smirnov, “All-fiber high-energy supercontinuum pulse generator,” Laser Phys. 20, 375–378 (2010). [CrossRef]
  17. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Continuous-wave parametric oscillation in polarisation-maintaining optical fibre,” Quantum Electron. 41, 794–800 (2011). [CrossRef]
  18. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982). [CrossRef]
  19. R. K. Jain and K. Stenersen, “Phase-matched four-photon mixing processes in birefringent fibers,” Appl. Phys. B 35, 49–57 (1984). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  21. L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25, 3563–3574 (2007). [CrossRef]
  22. L. Wang, S. Lou, W. Chen, and H. Li, “A novel method of rapidly modeling optical properties of actual photonic crystal fibres,” Chin. Phys. B 19, 084209 (2010). [CrossRef]
  23. Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietra, and K. Kawanami, “A comparison of six techniques for nonlinear coefficient measurements of various signal mode optical fibers,” in 12th Symposium on Optical Fiber Measurements (Diane Publishing Co., 2002), pp. 15–18.
  24. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32, 115–117 (2007). [CrossRef]
  25. S. A. Babin, S. I. Kablukov, I. S. Shelemba, and A. A. Vlasov, “An interrogator for a fiber Bragg sensor array based on a tunable erbium fiber laser,” Laser Phys. 17, 1340–1344 (2007). [CrossRef]
  26. S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys. 17, 1323–1326 (2007). [CrossRef]
  27. A. S. Kurkov, E. M. Dianov, V. M. Paramonov, A. N. Gur’yanov, A. Yu. Laptev, V. F. Khopin, A. A. Umnikov, N. I. Vechkanov, O. I. Medvedkov, S. A. Vasil’ev, M. M. Bubnov, O. N. Egorova, S. L. Semenov, and E. V. Pershina, “High-power fibre Raman lasers emitting in the 1.22–1.34 μm range,” Quantum Electron. 30, 791–793 (2000). [CrossRef]
  28. S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a Raman fiber laser,” Laser Phys. 20, 365–371 (2010). [CrossRef]
  29. http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml .
  30. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002). [CrossRef]
  31. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002). [CrossRef]
  32. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990). [CrossRef]
  33. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, “Cross-phase modulational instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990). [CrossRef]
  34. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994). [CrossRef]
  35. S. J. Garth and C. Pask, “Four-photon mixing and dispersion in single-mode fibers,” Opt. Lett. 11, 380–382 (1986). [CrossRef]
  36. I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Muehlig, Handbook of Mathematics (Springer, 2007).
  37. F. Yaman, Q. Lin, and G. P. Agrawal, “Fiber-optic parametric amplifiers for lightwave systems,” in Guided Wave Optical Components and DevicesB. P. Pal, ed. (Academic, 2005), Chap. 7.
  38. V. A. Akulov, D. M. Afanasiev, S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “Frequency tuning and doubling in Yb-doped fiber lasers,” Laser Phys. 17, 124–129 (2007). [CrossRef]
  39. A. Canagasabey, C. Corbari, Zh. Zhang, P. G. Kazansky, and M. Ibsen, “Broadly tunable second-harmonic generation in periodically poled silica fibers,” Opt. Lett. 32, 1863–1865 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited