OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2021–2028

Dispersion ultrastrong compensating fiber based on a liquid-filled hybrid structure of dual-concentric core and depressed-clad photonic crystal fiber

Jui-Ming Hsu and Guang-Sheng Ye  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 2021-2028 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002021


View Full Text Article

Enhanced HTML    Acrobat PDF (1252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To achieve a dispersion-compensation photonic crystal fiber with an ultralarge negative chromatic dispersion coefficient, this paper theoretically investigates a liquid-filled hybrid structure of dual-concentric core photonic crystal fiber (DCC-PCF) and depressed-clad photonic crystal fiber (DeC-PCF). The proposed hybrid structure reveals an important property: The design can avoid the restriction of “mutual involvement” between two supermodes, thereby significantly increasing the index slope difference between two supermodes. Ultimately, the negative chromatic dispersion coefficient is greatly enlarged. The numeric results indicate that the negative chromatic dispersion coefficient for the proposed hybrid dispersion-compensating PCFs is up to 40400ps/(kmnm) at a wavelength of around 1.55 μm, which is approximately 1.81 times larger than that of the previous structure.

© 2012 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2330) Fiber optics and optical communications : Fiber optics communications
(230.2035) Optical devices : Dispersion compensation devices
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 7, 2011
Revised Manuscript: May 30, 2012
Manuscript Accepted: June 2, 2012
Published: July 18, 2012

Citation
Jui-Ming Hsu and Guang-Sheng Ye, "Dispersion ultrastrong compensating fiber based on a liquid-filled hybrid structure of dual-concentric core and depressed-clad photonic crystal fiber," J. Opt. Soc. Am. B 29, 2021-2028 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-2021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Vengsarkar and W. A. Reed, “Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation,” Opt. Lett. 18, 924–926 (1993). [CrossRef]
  2. J. L. Auguste, J. M. Blondy, J. Maury, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002). [CrossRef]
  3. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999). [CrossRef]
  4. F. Gerome, J.-L. Auguste, and J.-M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett. 29, 2725–2727 (2004). [CrossRef]
  5. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14, 893–900 (2006). [CrossRef]
  6. H. Subbaraman, T. Ling, Y-.Q. Jiang, M. Y. Chen, P. Cao, and R. T. Chen, “Design of a broadband highly dispersive pure silica photonic crystal fiber,” Appl. Opt. 46, 3263–3268 (2007). [CrossRef]
  7. X. Zhao, G. Zhou, . Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, “Photonic crystal fiber for dispersion compensation,” Appl. Opt. 47, 5190–5196 (2008). [CrossRef]
  8. C. P. Yu, J. H. Liou, S. S. Huang, and H. C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express 16, 4443–4451 (2008). [CrossRef]
  9. Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, “Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas,” Opt. Eng. 44, 125001 (2005). [CrossRef]
  10. Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, “Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna,” IEEE Photon. Technol. Lett. 17, 187–189 (2005). [CrossRef]
  11. S. K. Varshney, K. Saitoh, and M. Koshiba, “A novel design for dispersion compensating photonic crystal fiber Raman amplifier,” IEEE Photon. Technol. Lett. 17, 2062–2064 (2005). [CrossRef]
  12. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  13. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  14. J. D. Joannapolous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals—Molding the Flow of Light, 2nd ed.(Princeton University, 2008).
  15. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13, 9014–9022 (2005). [CrossRef]
  16. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional micostructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004). [CrossRef]
  17. K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A: Pure Appl. Opt. 7, L13–L20 (2005). [CrossRef]
  18. M. Sasaki, T. Ando, S. Nogawa, and K. Hane, “Direct photolithography on optical fiber end,” Jpn. J. Appl. Phys. 41, 4350–4355(2002). [CrossRef]
  19. C. Kerbage and B. J. Eggleton, “Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,” Opt. Express 10, 246–255(2002).
  20. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005), [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited