OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2099–2102

Generation of quadrupoles through instability of dark rings in photorefractive media

Pravin Vaity and Ravindra Pratap Singh  »View Author Affiliations


JOSA B, Vol. 29, Issue 8, pp. 2099-2102 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002099


View Full Text Article

Enhanced HTML    Acrobat PDF (818 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have produced beams with dark rings and studied their propagation through photovoltaic photorefractive media. We observe that dark rings, instead of forming dark ring solitons, break into vortex–antivortex pairs, forming quadrupoles. The experimental results could be taken as a consequence of modulational instability during beam propagation that is revealed through our numerical analysis.

© 2012 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5330) Nonlinear optics : Photorefractive optics
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 16, 2012
Revised Manuscript: June 5, 2012
Manuscript Accepted: June 16, 2012
Published: July 20, 2012

Citation
Pravin Vaity and Ravindra Pratap Singh, "Generation of quadrupoles through instability of dark rings in photorefractive media," J. Opt. Soc. Am. B 29, 2099-2102 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-8-2099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Kivshar and X. Yang, “Ring dark solitons,” Phys. Rev. E 50, R40–R43 (1994). [CrossRef]
  2. S. Baluschev, A. Dreischuh, I. Velchev, S. Dinev, and O. Marazov, “Generation and evolution of two-dimensional dark spatial solitons,” Phys. Rev. E 52, 5517–5523 (1995). [CrossRef]
  3. D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Flieber, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997). [CrossRef]
  4. G. Theocharis, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and Y. S. Kivshar, “Ring dark solitons and vortex necklaces in Bose-Einstein condensates,” Phys. Rev. Lett. 52, 2262–2265 (2003).
  5. A. M. Kamchatnov and S. V. Korneev, “Dynamics of ring dark solitons in Bose-Einstein condensates and nonlinear optics,” Phys. Lett. A 3744625–4628 (2010). [CrossRef]
  6. P. Vaity and R. P. Singh, “Self-healing property of optical ring lattice,” Opt. Lett. 362994–2996 (2011). [CrossRef]
  7. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999). [CrossRef]
  8. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Vortex evolution and bound pair formation in anisotropic nonlinear optical media,” Phys. Rev. Lett. 77, 4544–4547 (1996). [CrossRef]
  9. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Decay of high order optical vortices in anisotropic nonlinear optical media,” Phys. Rev. Lett. 78, 2108–2111 (1997). [CrossRef]
  10. P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, “Elliptical solitons in nonconventionally biased photorefractive crystals,” Opt. Express 15, 536–544 (2007). [CrossRef]
  11. X. Gan, P. Zhang, S. Liu, Y. Zheng, J. Zhao, and Z. Chen, “Stabilization and breakup of optical vortices in presence of hybrid nonlinearity,” Opt. Express 17, 23130–23136 (2009). [CrossRef]
  12. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Time-dependent evolution of an optical vortex in photorefractive media,” Phys. Rev. A 56, R1713–R1716 (1997). [CrossRef]
  13. R. Passier, F. Devaux, and M. Chauvet, “Impact of tensorial nature of the electro-optic effect on vortex beam propagation in photorefractive media,” Opt. Express 16, 7134–7141 (2008). [CrossRef]
  14. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520–1531 (1995). [CrossRef]
  15. A. Stepken, F. Kaiser, and M. R. Belic, “Anisotropic interaction of three-dimensional spatial screening solitons,” J. Opt. Soc. Am. B 17, 68–77 (2000). [CrossRef]
  16. D. N. Christodoulides and M. I. Carvalho, “Bright, dark and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995). [CrossRef]
  17. M. R. Belic, D. Vujic, A. Stepken, and F. Kaiser, “Isotropic versus anisotropic modeling of photorefractive solitons,” Phys. Rev. E 65, 066610 (2002). [CrossRef]
  18. A. V. Mamaev and M. Saffman, “Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices,” Phys. Rev. Lett. 76, 2262–2265 (1996). [CrossRef]
  19. A. V. Mamaev, M. Saffman, D. Z. Anderson, and A. A. Zozulya, “Propagation of light beams in anisotropic nonlinear media: from symmetry breaking to spatial turbulence,” Phys. Rev. A 54, 870–879 (1996). [CrossRef]
  20. A. V. Volyar and T. A. Fadeeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003). [CrossRef]
  21. A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Generation of single-charge optical vortices with an uniaxial crystal,” Opt. Express 14, 3724–3729 (2006). [CrossRef]
  22. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997). [CrossRef]
  23. M. R. Dennis, “Rows of optical vortices from elliptically perturbing a high-order beam,” Opt. Lett. 31, 1325–1327 (2006). [CrossRef]
  24. A. Kumar, P. Vaity, and R. P. Singh, “Crafting the core asymmetry to lift the degeneracy of optical vortices,” Opt. Express 19, 6182–6190 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited