OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2116–2123

Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz

Anna Mazhorova, Andrey Markov, Bora Ung, Mathieu Rozé, Stepan Gorgutsa, and Maksim Skorobogatiy  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2116-2123 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that chalcogenide glass As38Se62 capillaries can act as efficient waveguides in the whole mid-infrared–terahertz (THz) spectral range. The capillaries are fabricated using a double crucible drawing technique. This technique allows to produce glass capillaries with wall thicknesses in the range of 12 to 130 μm. Such capillaries show low-loss guidance in the whole mid-IR–THz spectral range. We demonstrate experimentally that low-loss guidance with thin capillaries involves various guidance mechanisms, including Fresnel reflections at the capillary inner walls, resonant guidance (ARROW type) due to light interference in the thin capillary walls, as well as total internal reflection guidance where very thin capillary walls act as a subwavelength waveguide, which is especially easy to observe in the THz spectral range.

© 2012 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(230.7370) Optical devices : Waveguides
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Devices

Original Manuscript: February 29, 2012
Revised Manuscript: June 11, 2012
Manuscript Accepted: June 26, 2012
Published: July 25, 2012

Anna Mazhorova, Andrey Markov, Bora Ung, Mathieu Rozé, Stepan Gorgutsa, and Maksim Skorobogatiy, "Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz," J. Opt. Soc. Am. B 29, 2116-2123 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Bruno, S. Maurugeon, F. Charpentier, J.-L. Adam, P. Boussard, and X.-H. Zhang, “Chalcogenide glass fibers for infrared sensing and space optics,” Fiber Integr. Opt. 28, 65–80 (2009). [CrossRef]
  2. J. Heo, M. Rodrigues, S. J. Saggese, and G. H. Sigel, “Remote fiber-optic chemical sensing using evanescent—wave interactions in chalcogenide glass fibers,” Appl. Opt. 30, 3944–3951 (1991). [CrossRef]
  3. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011). [CrossRef]
  4. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010). [CrossRef]
  5. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31, 1860–1862 (2006). [CrossRef]
  6. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011). [CrossRef]
  7. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002). [CrossRef]
  8. M. Zalkovskij, C. Z. Bisgaard, A. Novitsky, R. Malureanu, D. Savastru, A. Popescu, P. U. Jepsen, and A. V. Lavrinenko, “Ultrabroadband terahertz spectroscopy of chalcogenide glasses,” Appl. Phys. Lett. 100, 031901 (2012). [CrossRef]
  9. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).
  10. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19, B848–B861 (2011). [CrossRef]
  11. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006). [CrossRef]
  12. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [CrossRef]
  13. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007). [CrossRef]
  14. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007). [CrossRef]
  15. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B 28, 896–907 (2011). [CrossRef]
  16. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009). [CrossRef]
  17. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010). [CrossRef]
  18. Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express 10, 488–492 (2002).
  19. M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE Trans. Microw. Theory Tech. 28, 536–541 (1980). [CrossRef]
  20. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944–9954(2006). [CrossRef]
  21. E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36, 1782–1784(2011). [CrossRef]
  22. D. Chen and H. Chen, “A novel low-loss terahertz waveguide: Polymer tube,” Opt. Express 18, 3762–3767 (2010). [CrossRef]
  23. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared” J. Non-Cryst. Solids 351, 3341–3346 (2005). [CrossRef]
  24. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984). [CrossRef]
  25. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16, 214–217 (1998). [CrossRef]
  26. V. S. Shiryaev, J.-L. Adam, X. H. Zhang, C. Boussard-Pledel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004). [CrossRef]
  27. M. F. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995). [CrossRef]
  28. M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011). [CrossRef]
  29. V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Krukova, and V. G. Plotnichenko, “Effect of impurities of oxygen and carbon on optical transparency of As2Se3 glass,” Inorg. Mater. 41, 308–314 (2005). [CrossRef]
  30. G. E. Snopatin, V. S. Shiryaev, G. E. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45, 1439–1460 (2009). [CrossRef]
  31. Amorphous Materials, “AMTIR-2: Arsenic Selenide Glass As–Se” (Amorphous Materials Inc., 2009). http://www.amorphousmaterials.com/
  32. M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127–9138 (2011). [CrossRef]
  33. A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited