OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 8 — Aug. 1, 2012
  • pp: 2189–2198

Spectral hole burning in erbium-doped fibers for slow light

Sonia Melle, Oscar G. Calderón, Miguel A. Antón, Fernando Carreño, and Ana Egatz-Gómez  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2189-2198 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (991 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The homogeneous linewidth of the transition I 15 / 2 4 I 13 / 2 4 in highly doped erbium fibers and its dependence with temperature in the range from 10 to 50 K are experimentally characterized using spectral hole burning. The homogeneous linewidth dependence with temperature is quadratic above 20 K where homogeneous broadening is dominated by two-phonon Raman processes, and linear at lower temperatures where direct phonon processes occur. This characteristic power-law dependence was also derived from transmittance measurements. The solution of nonlinear field equations using the results obtained from our experiments predicts that Gaussian probe pulses propagate at subluminal speed through the narrow spectral holes burned in erbium-doped fibers. For gigahertz pulses in the telecommunication window, a fractional delay as high as 0.6 is predicted.

© 2012 Optical Society of America

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 19, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: July 1, 2012
Published: July 30, 2012

Sonia Melle, Oscar G. Calderón, Miguel A. Antón, Fernando Carreño, and Ana Egatz-Gómez, "Spectral hole burning in erbium-doped fibers for slow light," J. Opt. Soc. Am. B 29, 2189-2198 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003). [CrossRef]
  2. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007). [CrossRef]
  3. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001). [CrossRef]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef]
  6. K.-Y. Song, M. González-Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005). [CrossRef]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef]
  8. G. S. Agarwal and T. N. Dey, “Slow light in Doppler-broadened two-level systems,” Phys. Rev. A 68, 063816 (2003). [CrossRef]
  9. R. N. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71, 053811 (2005). [CrossRef]
  10. R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A 74, 033801 (2006). [CrossRef]
  11. J. Hahn and B. S. Ham, “Observations of self-induced ultraslow light in a persistent spectral hole burning medium,” Opt. Express 16, 16723–16728 (2008). [CrossRef]
  12. R. Lauro, T. Chanelière, and J. L. Le Gouët, “Slow light using spectral hole burning in a Tm3+-doped yttrium-aluminum-garnet crystal,” Phys. Rev. A 79, 063844 (2009). [CrossRef]
  13. R. M. MacFarlane and R. M. Shelby, “Homogeneous line broadening of optical transitions of ions and molecules in glasses,” J. Lumin. 36, 179–207 (1987). [CrossRef]
  14. R. M. MacFarlane, Y. Sun, P. B. Sellin, and R. L. Cone, “Optical decoherence in Er3+-doped silicate fiber: evidence for coupled spin-elastic tunneling systems,” Phys. Rev. Lett. 96, 033602 (2006). [CrossRef]
  15. D. L. Huber, M. M. Broer, and B. Golding, “Low temperature optical dephasing of rare-earth ions in glass,” Phys. Rev. Lett. 52, 2281–2284 (1984). [CrossRef]
  16. M. U. Staudt, S. R. Hastings-Simon, M. Afzelius, D. Jaccard, W. Tittel, and N. Gisin, “Investigations of optical coherence properties in an erbium-doped silica fiber for quantum state storage,” Opt. Commun. 266, 720–726 (2006). [CrossRef]
  17. Y. Silberberg, V. L. da Silva, J. P. Heritage, E. W. Chase, and M. J. Andrejco, “Accumulated photon echoes in doped fibers,” IEEE J. Quantum Electron. 28, 2369–2381 (1992). [CrossRef]
  18. L. Bigot, S. Choblet, A. M. Jurdyc, and B. Jacquier, “Transient spectral hole burning in erbium-doped fluoride glasses,” J. Opt. Soc. Am. B 21, 307–312 (2004). [CrossRef]
  19. E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole-burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990). [CrossRef]
  20. J. L. Zyskind, E. Desurvire, J. W. Sulhoff, and D. J. Di Giovanni, “Determination of homogeneous linewidth by spectral gain hole-burning in an erbium-doped fiber amplifier with GeO2:SiO2 core,” IEEE Photon. Technol. Lett. 2, 869–871 (1990). [CrossRef]
  21. L. Bigot, A. M. Jurdyc, B. Jacquier, L. Gasca, and D. Bayart, “Resonant fluorescence line narrowing measurements in erbium-doped glasses for optical amplifiers,” Phys. Rev. B 66, 214204 (2002). [CrossRef]
  22. R. Peretti, B. Jacquier, D. Boivin, E. Burov, and A. M. Jurdyc, “Inhomogeneous gain saturation in EDF: experiment and modeling,” J. Lightwave Technol. 29, 1445–1452 (2011). [CrossRef]
  23. R. Peretti, A. M. Jurdyc, B. Jacquier, E. Burov, and L. Gasca, “Resonant fluorescence line narrowing and gain spectral hole burning in erbium-doped fiber amplifier,” J. Lumin. 128, 1010–1012 (2008). [CrossRef]
  24. C. W. Thiel, T. Böttger, and R. L. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131, 353–361 (2011). [CrossRef]
  25. F. Arrieta-Yáñez, E. Cabrera-Granado, J. Ezquerro, O. Calderón, and S. Melle, “Pulse-width-dependent subluminal and superluminal propagation in highly doped erbium fibers,” J. Opt. Soc. Am. B 28, 1172–1179 (2011). [CrossRef]
  26. S. Haroche and F. Hartmann, “Theory of saturated-absorption line shapes,” Phys. Rev. A 6, 1280–1300 (1972). [CrossRef]
  27. A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, “Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium,” Phys. Rev. A 66, 013805 (2002). [CrossRef]
  28. A. E. Siegman, Lasers (University Science, 1986), Chap. 30.
  29. L. F. Shampine, M. W. Reichelt, and J. Kierzenka, “Solving boundary value problems for ordinary differential equations in MATLAB with BVP4C,” http://www.mathworks.com/bvp_tutorial .
  30. S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279, 53–63 (2007). [CrossRef]
  31. T. Suemoto, T. Okuno, and D. Nakano, “Defect-induced persistent hole burning in MgO-doped Pr3+:YAG systems,” Opt. Commun. 145, 113–118 (1998). [CrossRef]
  32. M. J. Weber, ed., Special feature on “Optical linewidths in glasses,” J. Lumin. 36, 179–329 (1987).
  33. P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Evidence and modelling of paired ions and other loss mechanisms in erbium-doped silica fibers,” Proc. SPIE 1789, 66–79 (1993). [CrossRef]
  34. O. G. Calderón, S. Melle, F. Arrieta-Yañez, M. A. Anton, and F. Carreño, “Effect of ion pairs in fast-light bandwidth in high-concentration erbium-doped fibers,” J. Opt. Soc. Am. B 25, C55–C60 (2008). [CrossRef]
  35. M. M. Broer, B. Golding, W. H. Haemmerle, and J. R. Simpson, “Low-temperature optical dephasing of rare-earth ions in inorganic glasses,” Phys. Rev. B 33, 4160–4165 (1986). [CrossRef]
  36. R. Yano, M. Mitsunaga, and N. Uesugi, “Stimulated-photon-echo spectroscopy. I. Spectral diffusion in Eu3+:YAIO3,” Phys. Rev. B 45, 12752–12759 (1992). [CrossRef]
  37. Y. Sun, R. L. Cone, L. Bigot, and B. Jacquier, “Exceptionally narrow homogeneous linewidth in erbium-doped glasses,” Opt. Lett. 31, 3453–3455 (2006). [CrossRef]
  38. The Cauchy principal value integral was evaluated by a double exponential quadrature. Coding in Matlab is due to Mohankumar and Natarajan http://www.mathworks.com/matlabcentral/fileexchange/13871-hilbertf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited