OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2425–2430

Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal

Pengxiang Liu, Degang Xu, Hao Jiang, Zhuo Zhang, Kai Zhong, Yuye Wang, and Jianquan Yao  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2425-2430 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theory of Cherenkov phase-matched monochromatic terahertz (THz)-wave generation via difference frequency generation in a nonlinear crystal is developed. An experimental situation (LiNbO3 pumped by dual-wavelength near-infrared nanosecond pulses) is considered. This theory accounts for the finite size of pump beam and allows us to explore the generation of transverse THz wave vector. The output characteristic of this THz source is analyzed based on the analytical expression, including radiation pattern, conversion efficiency, and tuning range. Calculated tuning curves are presented, which reasonably agree with previous experimental results. The influence of divergence of the focused pump beam on total radiated energy is studied in detail. Optimal pump beam size that maximizing generated THz energy is obtained.

© 2012 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(260.3090) Physical optics : Infrared, far

ToC Category:
Nonlinear Optics

Original Manuscript: May 22, 2012
Revised Manuscript: July 11, 2012
Manuscript Accepted: July 16, 2012
Published: August 16, 2012

Pengxiang Liu, Degang Xu, Hao Jiang, Zhuo Zhang, Kai Zhong, Yuye Wang, and Jianquan Yao, "Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal," J. Opt. Soc. Am. B 29, 2425-2430 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007). [CrossRef]
  2. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable and coherent 0.18–5.27 THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002). [CrossRef]
  3. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7 THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003). [CrossRef]
  4. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30, 2927–2929 (2005). [CrossRef]
  5. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theory Tech. 48, 653–661 (2000). [CrossRef]
  6. J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 2: Experiments,” Appl. Phys. B 86, 197–208 (2007). [CrossRef]
  7. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003), Chap. 2.
  8. P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second harmonic generation in form of coherent Cherenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450(1970). [CrossRef]
  9. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984). [CrossRef]
  10. A. G. Stepanov, J. Hebling, and J. Kuhl, “THz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23–26 (2005). [CrossRef]
  11. K. Suizu, T. Tutui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008). [CrossRef]
  12. T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, “Efficient Cherenkov-type phase-matched widely tunable THz-wave generation via an optimized pump beam shape,” Appl. Phys. Express 2, 032302 (2009). [CrossRef]
  13. T. Shibuya, K. Suizu, and K. Kawase, “Widely tunable monochromatic Cherenkov phase-matched Terahertz wave generation from bulk lithium niobate,” Appl. Phys. Express 3, 082201 (2010). [CrossRef]
  14. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009). [CrossRef]
  15. N. E. Yu, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Fine tuning terahertz generation in fanned-out periodically poled stoichiometric lithium tantalate crystal,” in Proceedings of IEEE Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz) (IEEE, 2010).
  16. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003), Chap. 1.
  17. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  18. M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line,” Phys. Rev. B 76, 085346 (2007). [CrossRef]
  19. J. R. Morris and Y. R. Shen, “Theory of far infrared generation by optical mixing,” Phys. Rev. A 15, 1143–1156 (1977). [CrossRef]
  20. P. X. Liu, D. G. Xu, C. M. Liu, D. Lv, Y. J. Lv, P. Wang, and J. Q. Yao, “P-polarized Cherenkov THz wave radiation generated by optical rectification for a Brewster-cut LiNbO3 crystal,” J. Opt. 13, 085202 (2011). [CrossRef]
  21. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electrooptic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14, 2263–2276 (2006). [CrossRef]
  22. K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007). [CrossRef]
  23. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of THz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005). [CrossRef]
  24. M. I. Bakunov, S. B. Bodrov, and M. V. Tsarev, “Terahertz emission from a laser pulse with tilted front: Phase-matching versus Cherenkov effect,” J. Appl. Phys. 104, 073105(2008). [CrossRef]
  25. N. S. Stoyanov, T. Feurer, D. W. Ward, E. R. Statz, and K. A. Nelson, “Direct visualization of a polariton resonator in the THz regime,” Opt. Express 12, 2387–2396 (2004). [CrossRef]
  26. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997). [CrossRef]
  27. K. Suizu, T. Shibuya, H. Uchida, and K. Kawase, “Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal,” Opt. Express 18, 3338–3344 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited