OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2453–2461

Comparison of asymmetric and symmetric cavity configurations of erbium-doped fiber laser in active Q -switched regime

Stanislav A. Kolpakov, Yuri O. Barmenkov, Alexander V. Kir’yanov, Ana D. Guzmán-Chávez, Jose L. Cruz, and Miguel V. Andrés  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2453-2461 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (770 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a comparative analysis of the dynamics of an actively Q -switched erbium-doped fiber laser assembled in two configurations of Fabry–Pérot cavity, asymmetric and symmetric, specified by the location of an acousto-optic Q -switch modulator relative to the output couplers. In both configurations, the length of an active ( Er 3 + -doped) fiber is chosen such that the laser does not spuriously emit at the moments when the modulator is blocked, which is important for the pulse-on-demand operation. We show experimentally that the symmetric cavity configuration permits enlarging of the active fiber length twice as compared to the asymmetric one, thereby increasing the energy and decreasing the duration of output pulses. We also demonstrate that in the symmetric cavity configuration the laser emits a train of short ( 18 ns width on a 3 dB level) and stable Q -switch pulses with a couple of much smaller in magnitude adjacent subpulses. We apply the traveling waves’ method for making an accurate modeling of the laser dynamics in both implementations. The modeling takes into account all the point intracavity losses as well as the distributed ones, including the loss stemming from the excited-state absorption of Er 3 + ions. The results of numerical simulations of the laser dynamics in both implementations are shown to be in excellent agreement with experiments.

© 2012 Optical Society of America

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3540) Lasers and laser optics : Lasers, Q-switched

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 1, 2012
Revised Manuscript: July 10, 2012
Manuscript Accepted: July 18, 2012
Published: August 22, 2012

Stanislav A. Kolpakov, Yuri O. Barmenkov, Alexander V. Kir’yanov, Ana D. Guzmán-Chávez, Jose L. Cruz, and Miguel V. Andrés, "Comparison of asymmetric and symmetric cavity configurations of erbium-doped fiber laser in active Q-switched regime," J. Opt. Soc. Am. B 29, 2453-2461 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Okamoto, R. Kitada, Y. Uno, and H. Doi, “Cutting of solid type molded composite materials by Q-switched fiber laser with high-performance nozzle,” J. Adv. Mech. Design Syst. Manufacturing 2, 651–660 (2008). [CrossRef]
  2. W. Shi, M. Leigh, J. Zong, and S. Jiang, “Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal,” Opt. Lett. 32, 949–951 (2007). [CrossRef]
  3. W. Shi, M. A. Leigh, J. Zong, Z. Yao, D. T. Nguyen, A. Chavez-Pirson, and N. Peyghambarian, “High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in the C-band and frequency conversion to THz generation,” IEEE J. Sel. Top. Quantum Electron. 15, 377–384 (2009). [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  5. A. Roy, M. Laroche, P. Roy, P. Leproux, and J.-L. Auguste, “Q-switched Yb-doped nonlinear microstructured fiber laser for the emission of broadband spectrum,” Opt. Lett. 32, 3299–3301 (2007). [CrossRef]
  6. J. Cascante-Vindas, A. Diez, J. L. Cruz, and M. V. Andres, “Supercontinuum Q-switched Yb fiber laser using an intracavity microstructured fiber,” Opt. Lett. 34, 3628–3630 (2009). [CrossRef]
  7. S. Adachi and Y. Koyamada, “Analysis and design of Q-switched erbium-doped fiber laser and their application to OTDR,” J. Lighwave Technol. 20, 1506–1511 (2002). [CrossRef]
  8. C. Cuadrado-Laborde, P. Perez-Millan, M. V. Andres, A. Diez, J. L. Cruz, and Y. O. Barmenkov, “Transform-limited pulses generated by an actively Q-switched distributed fiber laser,” Opt. Lett. 33, 2590–2592 (2008). [CrossRef]
  9. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49, 562–567 (2010). [CrossRef]
  10. J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4, 99–122 (2010). [CrossRef]
  11. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286–290 (1993). [CrossRef]
  12. P. Roy and D. Pagnoux, “Analysis and optimization of a Q-switched erbium doped fiber laser working with a short rise time modulator,” Opt. Fiber Technol. 2, 235–240 (1996). [CrossRef]
  13. Y. Wang and C. Q. Xu, “Understanding multipeak phenomena in actively Q-switched fiber lasers,” Opt. Lett. 29, 1060–1062 (2004). [CrossRef]
  14. S. A. Kolpakov, Y. O. Barmenkov, A. D. Guzman-Chavez, A. V. Kir’yanov, J. L. Cruz, A. Díez, and M. V. Andrés, “Distributed model for actively Q-switched erbium-doped fiber lasers,” IEEE J. Quantum Electron. 47, 928–934 (2011). [CrossRef]
  15. J. M. Saucedo-Solorio, A. N. Pisarchik, A. V. Kir’yanov, and V. Aboites, “Generalized multistability in a fiber laser with modulated losses,” J. Opt. Soc. Am. B 20, 490–496 (2003). [CrossRef]
  16. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  17. A. D. Guzman-Chavez, Y. O. Barmenkov, and A. V. Kir’yanov, “Spectral dependence of the excited-state absorption of erbium in silica fiber within the 1.48–1.59 μm range,” Appl. Phys. Lett. 92, 191111 (2008). [CrossRef]
  18. Y. O. Barmenkov, A. V. Kir’yanov, A. D. Guzman-Chavez, J. L. Cruz, and M. V. Andres, “Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm,” J. Appl. Phys. 106, 083108 (2009). [CrossRef]
  19. M. J. F. Digonnet, ed., Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (Dekker, 2001), Chaps. 2 and 7.
  20. A. V. Kir’yanov and Yu. O. Barmenkov, “Excited-state absorption and ion pairs as sources of nonlinear losses in heavily doped erbium silica fiber and erbium fiber laser,” Opt. Express 13, 8498–8507 (2005). [CrossRef]
  21. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994), Chap. 1.
  22. W. L. Barnes, R. I. Laming, E. J. Tarbox, and R. R. Morkel, “Absorption and emission cross-section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991). [CrossRef]
  23. D. Marcuse, “Loss analysis in single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  24. R. Xin and J. D. Zuegel, “Amplifying nanosecond optical pulses at 1053 nm with an all-fiber regenerative amplifier,” Opt. Lett. 36, 2605–2607 (2011). [CrossRef]
  25. J. del Valle-Hernandez, Y. O. Barmenkov, S. A. Kolpakov, J. L. Cruz, and M. V. Andres, “A distributed model for continuous-wave erbium-doped fiber laser,” Opt. Commun. 284, 5342–5347(2011). [CrossRef]
  26. A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. J. Lin, and D. J. Richardson, “High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping,” Opt. Express 17, 20927–20937 (2009). [CrossRef]
  27. D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “Highly dynamic and versatile pulsed fiber amplifier seeded by a superluminescence diode,” Appl. Phys. B 102, 737–741 (2011). [CrossRef]
  28. A. Bellemare, “Continuous-wave silica-based erbium-doped fibre lasers,” Prog. Quantum Electron. 27, 211–266 (2003). [CrossRef]
  29. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Nonradiative relaxation of rare-earth ions in silicate laser glass,” IEEE J. Quantum Electron. 11, 798–799 (1975). [CrossRef]
  30. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977). [CrossRef]
  31. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited