OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2462–2477

Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions

Shaghik Atakaramians, Alexander Argyros, Simon C. Fleming, and Boris T. Kuhlmey  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2462-2477 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1690 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the conditions in which guided modes exist in a circular waveguide with an anisotropic, uniaxial metamaterial cladding. These hollow-core waveguides can guide modes at deep subwavelength dimensions, with core diameters more than 20 times smaller than the operating wavelength.

© 2012 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials

ToC Category:
Optical Devices

Original Manuscript: June 4, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 17, 2012
Published: August 22, 2012

Shaghik Atakaramians, Alexander Argyros, Simon C. Fleming, and Boris T. Kuhlmey, "Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions," J. Opt. Soc. Am. B 29, 2462-2477 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  2. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13, 1811–1818 (2001). [CrossRef]
  3. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Guided modes in negative-refractive-index waveguides,” Phys. Rev. E 67, 057602 (2003). [CrossRef]
  4. H. Cory and A. Barger, “Surface-wave propagation along a metamaterial slab,” Microw. Opt. Technol. Lett. 38, 392–395 (2003). [CrossRef]
  5. B. I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, “Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,” J. Appl. Phys. 93, 9386–9388 (2003). [CrossRef]
  6. Y. He, Z. Cao, and Q. Shen, “Guided optical modes in asymmetric left-handed waveguides,” Opt. Commun. 245, 125–135 (2005). [CrossRef]
  7. K. L. Tsakmakidid, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, “Surface plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability,” Phys. Rev. B 73, 085104 (2006). [CrossRef]
  8. J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wireless Compon. Lett. 16, 96–98 (2006). [CrossRef]
  9. Z. Y. Xiao and Z. H. Wang, “Dispersion characteristics of asymmetric double-negative material slab waveguides,” J. Opt. Soc. Am. B 23, 1757–1760 (2006). [CrossRef]
  10. J. Schelleng, C. Monzon, P. F. Loschilpo, D. W. Forester, and L. N. Medgyesi-Mitschang, “Characteristics of waves guided by a grounded left-handed material slab of finite extent,” Phys. Rev. E 70, 066606 (2004). [CrossRef]
  11. P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Fundamental modal properties of surface waves on metamaterial grounded slabs,” IEEE Trans. Microw. Theory Tech. 53, 1431–1442 (2005).
  12. M. M. B. Suwailiam and Z. Chen, “Surface waves on a grounded double-negative (DNG) slab waveguide,” Microw. Opt. Technol. Lett. 44, 494–498 (2005). [CrossRef]
  13. G. DAguanno, N. Mattiucci, M. Scalora, and M. J. Bloemer, “TE and TM guided modes in an air waveguide with negative-index-material cladding,” Phys. Rev. E 71, 046603 (2005). [CrossRef]
  14. A. C. Peacock and N. G. R. Broderick, “Guided modes in channel waveguides with a negative index of refraction,” Opt. Express 11, 2502–2510 (2003). [CrossRef]
  15. R. Ruppin, “Surface polaritons and extinction properties of a left-handed material cylinder,” J. Phys. Condens. Matter 16, 5991–5998 (2004). [CrossRef]
  16. H. Cory and T. Blum, “Surface-wave propagation along a metamaterial cylindrical guide,” Microw. Opt. Technol. Lett. 44, 31–35 (2005). [CrossRef]
  17. A. V. Novitsky and L. M. Barkovsky, “Guided modes in negative-refractive-index fibres,” J. Opt. A 7, S51–S56 (2005). [CrossRef]
  18. A. V. Novitsky, “Negative-refractive-index fibres: TEM modes,” J. Opt. A 8, 864–866 (2006). [CrossRef]
  19. L. F. Shen and S. Xu, “Guided modes characteristics in a fiber with left-handed material,” Microw. Opt. Technol. Lett. 49, 1039–1041 (2007). [CrossRef]
  20. L. F. Shen and Z. H. Wang, “Guided modes in fiber with left-handed materials,” J. Opt. Soc. Am. A 26, 754–759 (2009). [CrossRef]
  21. K. Y. Kim, J. H. Lee, Y. K. Cho, and H-S. Tae, “Electromagnetic wave propagation through doubly dispersive subwavelength metamaterial hole,” Opt. Express 13, 3653–3665 (2005). [CrossRef]
  22. K. Y. Kim, “Fundamental guided electromagnetic dispersion characteristics in lossless dispersive metamaterial clad circular air-hole waveguides,” J. Opt. A 9, 1062–1069 (2007). [CrossRef]
  23. L. Hu and Z. Lin, “Imaging properties of uniaxially anisotropic negative refractive index materials,” Phys. Lett. A 313, 316–324 (2003). [CrossRef]
  24. Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41, 426–431 (2004). [CrossRef]
  25. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17, 14851–14864 (2009). [CrossRef]
  26. S. Schwaiger, M. Broll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102, 163903 (2009). [CrossRef]
  27. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010). [CrossRef]
  28. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96, 191101 (2010). [CrossRef]
  29. A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, “Stacked-and-drawn metamaterials with magnetic resonances in the terahertz range,” Opt. Express 19, 16480–16490 (2011). [CrossRef]
  30. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength THz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009). [CrossRef]
  31. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10, 4785–4809 (1998). [CrossRef]
  32. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47, 2075–2084(1999).
  33. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003). [CrossRef]
  34. A. Tuniz, B. Pope, A. Wang, M. C. J. Large, S. Atakaramians, S. S. Min, E. M. Pogson, R. A. Lewis, A. Bendavid, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Spatial dispersion in three-dimensional drawn magnetic metamaterials,” Opt. Express 20, 11924–11935 (2012). [CrossRef]
  35. A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys. Condens. Matter 20, 295222 (2008). [CrossRef]
  36. J. R. Cozens, “Propagation in cylindrical fibres with anisotropic crystal cores,” Electron. Lett. 12, 413–415 (1976). [CrossRef]
  37. J. A. Fleck and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73, 920–926 (1983). [CrossRef]
  38. J. A. Kong, Electromagnetic Wave Theory, 2nd ed. (Wiley, 1990).
  39. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  40. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961). [CrossRef]
  41. J. Dong, “Guided and surface modes in chiral nihility fiber,” Opt. Commun. 283, 532–536 (2010). [CrossRef]
  42. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 2000).
  43. M. Hotta, M. Hano, and I. Awai, “Surface waves along a boundary of single negative material,” IEICE Trans. Electron. E88-C, 275–278 (2005). [CrossRef]
  44. K. Y. Kim, “Comparative analysis of guided modal properties of double-positive and double-negative metamaterial slab waveguides,” Radioengineering 18, 117–123 (2009).
  45. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef]
  46. S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008). [CrossRef]
  47. S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011). [CrossRef]
  48. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1, 58–106 (2009). [CrossRef]
  49. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited