OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2542–2547

Method for tuning light extinction by thermal expansion of coated nanoparticles

Etai Rosenkrantz and Shlomi Arnon  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2542-2547 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002542


View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel method for all-optical modulation. Our method is based on tuning the dimensions of nanoparticles by manipulating thermal energy. The excitation characteristics of coated nanoparticles change following minor variations in their dimensions. This is because incident radiation will encounter particles with an altered extinction cross section. We considered nanoparticles comprising gold cores with silica coating. We found distinct nanoparticle dimensions that exhibit steep changes in their optical extinction cross section under thermal expansion. Based on these dimensions we calculated the optical contrast. The results showed that optical contrast reaches 1.86 dB for radii of 900 nm.

© 2012 Optical Society of America

OCIS Codes
(000.6850) General : Thermodynamics
(060.4080) Fiber optics and optical communications : Modulation
(140.6810) Lasers and laser optics : Thermal effects
(290.4020) Scattering : Mie theory
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Devices

History
Original Manuscript: June 5, 2012
Revised Manuscript: July 18, 2012
Manuscript Accepted: July 26, 2012
Published: August 29, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Etai Rosenkrantz and Shlomi Arnon, "Method for tuning light extinction by thermal expansion of coated nanoparticles," J. Opt. Soc. Am. B 29, 2542-2547 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2542


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Mizrahi, K. DeLong, G. I. Stegeman, M. A. Saifi, and M. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989). [CrossRef]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef]
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [CrossRef]
  4. A. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005). [CrossRef]
  5. R. Takahashi, Y. Kawamura, and H. Iwamura, “Ultrafast 1.55 μm all-optical switching using low-temperature-grown multiple quantum wells,” Appl. Phys. Lett. 68, 153–155 (1996). [CrossRef]
  6. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997). [CrossRef]
  7. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009). [CrossRef]
  8. N. Zeng and A. B. Murphy, “Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination,” Nanotechnology 20, 375702 (2009). [CrossRef]
  9. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999). [CrossRef]
  10. J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755–6759 (2002). [CrossRef]
  11. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  13. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
  14. T. Anderson, R. Magruder, J. Wittig, D. Kinser, and R. Zuhr, “Fabrication of Cu-coated Ag nanocrystals in silica by sequential ion implantation,” Nucl. Instrum. Methods. Phys. Res. B: Beam Interact. Mater. Atoms 171, 401–405 (2000). [CrossRef]
  15. S. Arnon, D. Sadot, and N. Kopeika, “Simple mathematical models for temporal, spatial, angular, and attenuation characteristics of light propagating through the atmosphere for space optical communication,” J. Mod. Opt. 41, 1955–1972 (1994). [CrossRef]
  16. W. S. Rabinovich, R. Mahon, H. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. Stell, M. J. Vilcheck, J. L. Witkowsky, and L. Swingen, “Free-space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 056001 (2005). [CrossRef]
  17. T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998). [CrossRef]
  18. O. Ekici, R. Harrison, N. Durr, D. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501(2008). [CrossRef]
  19. S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409–453(2000). [CrossRef]
  20. M. Rashidi-Huyeh and B. Palpant, “Thermal response of nanocomposite materials under pulsed laser excitation,” J. Appl. Phys. 96, 4475–4482 (2004). [CrossRef]
  21. G. W. Scherer, “Viscoelastic analysis of thermal stresses in a composite sphere,” J. Am. Ceram. Soc. 66, 59–65 (1983). [CrossRef]
  22. A. Fahmy and A. Ragai, “Thermal-expansion behavior of two-phase solids,” J. Appl. Phys. 41, 5108–5111 (1970). [CrossRef]
  23. Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” J. Appl. Phys. 56, 314–320(1984). [CrossRef]
  24. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, 1991).
  25. X. Cong and G. C. K. Chen, “Design of micro-lens array for indoor optical wireless communication,” in Proceedings of IEEE PhotonicsGlobal@Singapore, 2008 (IEEE, 2008), pp. 1–4.
  26. Y. S. Touloukian, “Recommended values of the thermophysical properties of eight alloys, major constituents and their oxides,” Recommended Values of the Thermophysical Properties of Eight Alloys, Major Constituents and Their Oxides (Purdue University, 1966).
  27. M. A. van Dijk, “Nonlinear optical studies of single gold nanoparticles,” Ph.D. thesis (Leiden University, 2007).
  28. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980). [CrossRef]
  29. J. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys. 99, 063516 (2006). [CrossRef]
  30. L. A. Girifalco, Statistical Mechanics of Solids (Oxford University, 2003).
  31. T. Hao and R. E. Riman, “Calculation of interparticle spacing in colloidal systems,” J. Colloid Interface Sci. 297, 374–377 (2006). [CrossRef]
  32. P. A. Martin, Multiple Scattering: Interaction Of Time-Harmonic Waves with N Obstacles (Cambridge University, 2006).
  33. A. Perez-Madrid, J. Rubi, and L. C. Lapas, “Heat transfer between nanoparticles: thermal conductance for near-field interactions,” Phys. Rev. B 77, 155417 (2008). [CrossRef]
  34. G. Domingues, S. Volz, K. Joulain, and J. J. Greffet, “Heat transfer between two nanoparticles through near field interaction,” Phys. Rev. Lett. 94, 085901 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited