OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 127–135

Modes in silver-iodide-lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy

Miguel Navarro-Cia, Carlos M. Bledt, Miriam S. Vitiello, Harvey E. Beere, David A. Ritchie, James A. Harrington, and Oleg Mitrofanov  »View Author Affiliations


JOSA B, Vol. 30, Issue 1, pp. 127-135 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000127


View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thin dielectric layers inside hollow metallic waveguides are used to improve the waveguide transmission characteristics as the dominant waveguide mode changes into the hybrid HE11 mode. We investigate the effect of 1 μm thick silver iodide (AgI) coatings on the fundamental modes in cylindrical waveguides at terahertz (THz) frequencies, in the regime of the dielectric layer being thinner than the optimal thickness hopt(2THz)20μm. In the region of 1–3.2 THz, the lowest-order modes are similar in profile to the TE11 and TM11 modes, as determined by the time-resolved near-field measurements and verified numerically. Higher-order modes are detected experimentally as mode mixtures due to the multimode propagation. Numerical electromagnetic modeling is applied to resolve the mode structure ambiguity, allowing us to correlate experimentally detected patterns with a superposition of the TM11 and the higher-order mode, TE12. Mode profiles determined here indicate that in the regime of ultrathin dielectric (h0.1λeff), the dielectric layer does not transform the dominant mode into the low-loss HE11 mode. Experimental mode patterns similar to the HE11 and the TE01 modes nevertheless can be formed due to mode beating. The results indicate that the Ag/AgI waveguides can be used for guiding THz waves in the TE01 mode or the TE12 mode with high discrimination against other modes.

© 2012 Optical Society of America

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(180.4243) Microscopy : Near-field microscopy
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Microscopy

History
Original Manuscript: August 6, 2012
Revised Manuscript: October 2, 2012
Manuscript Accepted: November 15, 2012
Published: December 12, 2012

Citation
Miguel Navarro-Cia, Carlos M. Bledt, Miriam S. Vitiello, Harvey E. Beere, David A. Ritchie, James A. Harrington, and Oleg Mitrofanov, "Modes in silver-iodide-lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy," J. Opt. Soc. Am. B 30, 127-135 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-1-127

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited