OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 127–135

Modes in silver-iodide-lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy

Miguel Navarro-Cia, Carlos M. Bledt, Miriam S. Vitiello, Harvey E. Beere, David A. Ritchie, James A. Harrington, and Oleg Mitrofanov  »View Author Affiliations


JOSA B, Vol. 30, Issue 1, pp. 127-135 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000127


View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thin dielectric layers inside hollow metallic waveguides are used to improve the waveguide transmission characteristics as the dominant waveguide mode changes into the hybrid HE11 mode. We investigate the effect of 1 μm thick silver iodide (AgI) coatings on the fundamental modes in cylindrical waveguides at terahertz (THz) frequencies, in the regime of the dielectric layer being thinner than the optimal thickness hopt(2THz)20μm. In the region of 1–3.2 THz, the lowest-order modes are similar in profile to the TE11 and TM11 modes, as determined by the time-resolved near-field measurements and verified numerically. Higher-order modes are detected experimentally as mode mixtures due to the multimode propagation. Numerical electromagnetic modeling is applied to resolve the mode structure ambiguity, allowing us to correlate experimentally detected patterns with a superposition of the TM11 and the higher-order mode, TE12. Mode profiles determined here indicate that in the regime of ultrathin dielectric (h0.1λeff), the dielectric layer does not transform the dominant mode into the low-loss HE11 mode. Experimental mode patterns similar to the HE11 and the TE01 modes nevertheless can be formed due to mode beating. The results indicate that the Ag/AgI waveguides can be used for guiding THz waves in the TE01 mode or the TE12 mode with high discrimination against other modes.

© 2012 Optical Society of America

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(180.4243) Microscopy : Near-field microscopy
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Microscopy

History
Original Manuscript: August 6, 2012
Revised Manuscript: October 2, 2012
Manuscript Accepted: November 15, 2012
Published: December 12, 2012

Citation
Miguel Navarro-Cia, Carlos M. Bledt, Miriam S. Vitiello, Harvey E. Beere, David A. Ritchie, James A. Harrington, and Oleg Mitrofanov, "Modes in silver-iodide-lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy," J. Opt. Soc. Am. B 30, 127-135 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-1-127


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. 1, 124–132 (2011). [CrossRef]
  2. E. A. J. Marcatilli and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  3. J. W. Carlin and P. D’Agostino, “Normal modes in overmoded dielectric-lined circular waveguide,” Bell Syst. Tech. J. 52, 453–486 (1973).
  4. J. W. Carlin and A. Maione, “Experimental verification of low-loss TM modes in dielectric-lined waveguide,” Bell Syst. Tech. J. 52, 487–496 (1973).
  5. N. Marcuvitz, Waveguide Handbook, ser. Electromagnetic Waves Series (IEE, 1986).
  6. P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas (IEE, 1984).
  7. P. Bhartia and I. J. Bahl, Millimeter Wave Engineering and Applications (Wiley, 1984).
  8. J. P. Crenn, “A study of waveguides for far infrared interferometers measuring electron density of Tokamak plasmas,” IEEE Trans. Microwave Theory Tech. 27, 573–577 (1979). [CrossRef]
  9. J. L. Doane, “Propagation and mode coupling in corrugated and smooth-wall circular waveguides,” in Infrared and Millimeter Waves, K. J. Button, ed., vol. 13 (Academic, 1985), pp. 123–170.
  10. M. Miyagi, K. Harada, and S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. 32, 513–521 (1984). [CrossRef]
  11. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008). [CrossRef]
  12. M. Thumm, A. Jacobs, and M. Sorolla Ayza, “Design of short high-power TE11-HE11 mode converters in highly overmoded corrugated waveguides,” IEEE Trans. Microwave Theory Tech. 39, 301–309 (1991). [CrossRef]
  13. B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Institute of Electrical Engineers, 1998).
  14. J. Teniente, R. Gonzalo, C. Del Río, J. Martí Canales, M. Sorolla, A. Fernández, K. Likin, and R. Martín, “Corrugated horn antenna for low-power testing of the quasioptical transmission lines at TJ-II Stellerator,” J. Infrared Millimeter Waves 20, 1–19 (1999).
  15. M. Miyagi, and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984). [CrossRef]
  16. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
  17. Y. Kato, and M. Miyagi, “Modes and attenuation constants in circular hollow waveguides with small core diameters for the infrared,” IEEE Trans. Microwave Theory Tech. 40, 679–685 (1992). [CrossRef]
  18. Y. Kato, and M. Miyagi, “Numerical analysis of mode structures and attenuations in dielectric-coated circular hollow waveguides for the infrared,” IEEE Trans. Microwave Theory Tech. 42, 2336–2342 (1994). [CrossRef]
  19. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007). [CrossRef]
  20. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000). [CrossRef]
  21. E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, “Note: stacked rings for terahertz wave-guiding,” Rev. Sci. Instrum. 82, 066102 (2011). [CrossRef]
  22. M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992). [CrossRef]
  23. K. Iwai, A. Hongo, H. Takaku, M. Miyagi, J.-i. Ishiyama, X.-X. Wu, Y.-W. Shi, and Y. Matsuura, “Fabrication and transmission characteristics of infrared hollow fiber based on silver-clad stainless steel pipes,” Appl. Opt. 48, 6207–6212 (2009). [CrossRef]
  24. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett. 34, 2231–2233 (2009). [CrossRef]
  25. U. S. de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Milli. THz Waves 33, 319–326 (2012). [CrossRef]
  26. M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011). [CrossRef]
  27. M. S. Vitiello, J.-H. Xu, M. Kumar, F. Beltram, A. Tredicucci, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “High efficiency coupling of terahertz micro-ring quantum cascade lasers to the low-loss optical modes of hollow metallic waveguides,” Opt. Express 19, 1122–1130 (2011). [CrossRef]
  28. O. Mitrofanov, I. Brener, R. Harel, J. D. Wynn, L. N. Pfeiffer, K. W. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000). [CrossRef]
  29. O. Mitrofanov, M. Lee, J. W. P. Hsu, I. Brener, R. Harel, J. Federici, J. D. Wynn, L. N. Pfeiffer, and K. W. West, “Collection-mode near-field imaging with 0.5 THz pulses,” IEEE J. Sel. Top. Quantum Electron. 7, 600–607 (2001). [CrossRef]
  30. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94, 171104 (2009). [CrossRef]
  31. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010). [CrossRef]
  32. C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012). [CrossRef]
  33. C. Dragone, “Attenuation and radiation characteristics of the HE11 mode,” IEEE Trans. Microwave Theory Tech. 28, 704–710 (1980). [CrossRef]
  34. C. S. Lee, S. W. Lee, and S. L. Chuang, “Plot of modal field distribution in rectangular and circular waveguides,” IEEE Trans. Microwave Theory Tech. 33, 271–274 (1985).
  35. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B 25, 1949–1954 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited