OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 178–187

Theoretical investigation of modulational instability in semiconductor doped dispersion decreasing fiber and its cutting edge over the existing fiber systems

K. Nithyanandan, R. Vasantha Jayakantha Raja, and K. Porsezian  »View Author Affiliations


JOSA B, Vol. 30, Issue 1, pp. 178-187 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000178


View Full Text Article

Enhanced HTML    Acrobat PDF (1749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical study of modulational instability (MI) in the semiconductor doped dispersion decreasing fiber (SD-DDF) is presented. We consider the combination of saturation of nonlinear response and the dispersion decreasing fiber (DDF). The exact dispersion relation is calculated by means of linear stability analysis. Different fiber systems are considered alongside the proposed SD-DDF for insight and to offer the cutting edge of the proposed model over the others. The two extreme physical effects considered lead to an exciting outcome, where decreasing dispersion leads to broadening the spectral width and saturation, on the other hand, suppresses the MI gain and the bandwidth. A bandwidth relation between different fiber systems is presented, and the idea can open the design of a fiber structure with desired dispersion profile by a suitable manipulation of these effects. We propose that instead of using DDF whose bandwidth is limited by the manufacturing constraints, the use of SD-DDF offers better tailoring of the bandwidth profile by suitably altering the saturation parameter. Thus we emphasize that the proposed SD-DDF will be a feature prospect for wide range of applications, especially in the context of ultrashort pulse generation using MI.

© 2012 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 4, 2012
Revised Manuscript: November 8, 2012
Manuscript Accepted: November 18, 2012
Published: December 17, 2012

Citation
K. Nithyanandan, R. Vasantha Jayakantha Raja, and K. Porsezian, "Theoretical investigation of modulational instability in semiconductor doped dispersion decreasing fiber and its cutting edge over the existing fiber systems," J. Opt. Soc. Am. B 30, 178-187 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-1-178


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  2. A. Hasegawa and F. Tappert, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Appl. Phys. Lett. 23, 142–244 (1973). [CrossRef]
  3. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984). [CrossRef]
  4. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986). [CrossRef]
  5. M. J. Potasek, “Modulation instability in an extended nonlinear Schrödinger equation,” Opt. Lett. 12, 921–923 (1987). [CrossRef]
  6. E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Taylor, “Generation of 2 Thz repetition rate pulse trains through induced modulational instability,” Electron. Lett. 25, 1246–1248 (1989). [CrossRef]
  7. R. Vasantha Jayakantha Raja, K. Porsezian, and K. Nithyanandan, “Modulational instability induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010). [CrossRef]
  8. M. N. Z. Abouou, P. T. Dinda, C. M. Ngabireng, B. Kibler, and F. Smektala, “Impact of the material absorption on the modulational instability spectra of wave propagation in high-index glass fibers,” J. Opt. Soc. Am. B 28, 1518–1528 (2011). [CrossRef]
  9. A. Kumar, A. Labruyere, and P. T. Dinda, “Modulational instability in fiber systems with periodic loss compensation and dispersion management,” Opt. Commun. 219, 221–232 (2003). [CrossRef]
  10. S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991). [CrossRef]
  11. F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994). [CrossRef]
  12. S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415–422 (2003). [CrossRef]
  13. J. E. Rothenberg, “Modulation instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990). [CrossRef]
  14. G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A 39, 3406–3413 (1989). [CrossRef]
  15. E. Seve, P. Dinda, G. Millot, M. Remoissenet, J. M. Bilbault, and M. Haelterman, “Modulational instability and critical regime in a highly birefringent fiber,” Phys. Rev. A 54, 3519–3534 (1996). [CrossRef]
  16. P. T. Dinda, G. Millot, E. Seve, and M. Haelterman, “Demonstration of a nonlinear gap in the modulational instability spectra of wave propagation in highly birefringent fibers,” Opt. Lett. 21, 1640–1642 (1996). [CrossRef]
  17. G. Millot, P. Dinda, E. Seve, and S. Wabnitz, “Modulational instability and stimulated Raman scattering in normally dispersive highly birefringent fibers,” Opt. Fiber Technol. 7, 170–205 (2001). [CrossRef]
  18. G. Millot, E. Seve, S. Wabnitz, and J. M. Haelterman, “Observation of induced modulational polarization instabilities and pulse-train generation in the normal dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B 15, 1266–1277 (1998). [CrossRef]
  19. P. T. Dinda, G. Millot, and S. Wabnitz, “Polarization switching and suppression of stimulated Raman scattering in birefringent optical fibers,” J. Opt. Soc. Am. B 15, 1433–1441 (1998). [CrossRef]
  20. P. T. Dinda, C. Ngabireng, K. Porsezian, and B. Kalithasan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142–150 (2006). [CrossRef]
  21. P. K. A. Wai, and W.-H. Cao, “Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion decreasing fiber,” J. Opt. Soc. Am. B 20, 1346–1355 (2003). [CrossRef]
  22. B. A. Malomed, “Ideal amplification of an ultrashort soliton in a dispersion-decreasing fiber,” Opt. Lett. 19, 341–343 (1994). [CrossRef]
  23. W.-J. Liu, B. Tian, T. Xu, K.-J. Cai, and H. Zhang, “Pulse amplification in dispersion decreasing fibers with symbolic computation,” Commun. Theor. Phys. 52, 1076–1080 (2009). [CrossRef]
  24. R. Vasantha Jayakantha Raja, K. Senthilnathan, K. Porsezian, and K. Nakkeeran, “Efficient pulse compression using tapered photonic crystal fiber at 850 nm,” IEEE J. Quantum Electron. 46, 1795–1803 (2010). [CrossRef]
  25. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476–478 (1993). [CrossRef]
  26. K. I. M. McKinnon, N. F. Smyth, and A. L. Worthy, “Optimization of soliton amplitude in dispersion-decreasing nonlinear optical fibers,” J. Opt. Soc. Am. B 16, 441–447 (1999). [CrossRef]
  27. K.-T. Chan, and W.-H. Cao, “Enhanced compression of fundamental solitons in dispersion decreasing fibers due to the combined effects of negative third-order dispersion and Raman self-scattering,” Opt. Commun. 184, 463–474 (2000). [CrossRef]
  28. M. Pelusi, and H.-F. Liu, “Higher order soliton pulse compression in dispersion decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997). [CrossRef]
  29. J. Travers, J. M. Stone, A. Rulkov, B. Cumberland, A. George, S. Popov, J. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007). [CrossRef]
  30. D. Gupta, G. Kumar, and K. Thyagarajan, “Nonlinear pulse propagation in dispersion decreasing fibers,” Opt. Commun. 237, 309–317 (2004). [CrossRef]
  31. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15, 15824–15835 (2007). [CrossRef]
  32. S. Wabnitz and C. Finot, “Theory of parabolic pulse propagation in nonlinear dispersion-decreasing optical fiber amplifiers,” J. Opt. Soc. Am. B 25, 614–621 (2008). [CrossRef]
  33. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29, 498–500 (2004). [CrossRef]
  34. W.-C. Xu, S.-M. Zhang, W. C. Chen, A.-P. Luo, and S.-H Liu, “Modulation instability of femtosecond pulses in dispersion-decreasing fibers,” Opt. Commun. 199, 355–360 (2001). [CrossRef]
  35. S. Zhang, F. Lu, W. Xu, and J. Wang, “Modulation instability induced by cross-phase modulation in decreasing dispersion fiber,” Opt. Fiber Tech. 11, 193–201 (2005). [CrossRef]
  36. L. Acioli, A. Gomes, J. Hickmann, and C. B. D. Araujo, “Femtosecond dynamics of semiconductor-doped glasses using a new source of incoherent light,” Appl. Phys. Lett. 56, 2279–2281 (1990). [CrossRef]
  37. J. L. Coutaz and M. Kull, “Saturation of the nonlinear index of refraction in semiconductor-doped glass,” J. Opt. Soc. Am. B 8, 95–98 (1991). [CrossRef]
  38. I. Kang, T. D. Krauss, F. W. Wise, B. G. Aitken, and N. F. Borrelli, “Femtosecond measurement of enhanced optical nonlinearities of sulfide glasses and heavy-metal-doped oxide glasses,” J. Opt. Soc. Am. B 12, 2053–2059 (1995). [CrossRef]
  39. Y. F. Chen, K. Beckwitt, F. K. Wise, B. G. Aitken, J. S. Sanghera, and I. D. Aggarwal, “Measurement of fifth- and seventh-order nonlinearities of glasses,” J. Opt. Soc. Am. B 23, 347–352 (2006). [CrossRef]
  40. S. Gatz and J. Herrmann, “Soliton propagation in materials with saturable nonlinearity,” J. Opt. Soc. Am. B 8, 2296–2302 (1991). [CrossRef]
  41. J. Herrmann, “Propagation of ultrashort light pulses in fibers with saturable nonlinearity in the normal-dispersion region,” J. Opt. Soc. Am. B 8, 1507–1511 (1991). [CrossRef]
  42. J. M. Hickmann, S. B. Cavalcanti, N. M. Borges, E. A. Gouveia, and A. S. Gouveia-Neto, “Modulational instability in semiconductor-doped glass fibers with saturable nonlinearity,” Opt. Lett. 18, 182–184 (1993). [CrossRef]
  43. P. T. Dinda and K. Porsezian, “Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity,” J. Opt. Soc. Am. B 27, 1143–1152 (2010). [CrossRef]
  44. N. D. Dalt, C. D. Angelis, G. Nalesso, and M. Santagiustina, “Dynamics of induced modulational instability in waveguides with saturable nonlinearity,” Opt. Commun. 121, 69–72(1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited